Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach
详细信息    查看全文
  • 作者:Anne K. Krug (1)
    Raivo Kolde (2) (3)
    John A. Gaspar (4)
    Eugen Rempel (11)
    Nina V. Balmer (1)
    Kesavan Meganathan (4)
    Kinga Vojnits (6)
    Mathurin Baquié (7)
    Tanja Waldmann (1)
    Roberto Ensenat-Waser (6)
    Smita Jagtap (4)
    Richard M. Evans (8)
    Stephanie Julien (7)
    Hedi Peterson (7)
    Dimitra Zagoura (6)
    Suzanne Kadereit (1)
    Daniel Gerhard (10)
    Isaia Sotiriadou (4)
    Michael Heke (4)
    Karthick Natarajan (4)
    Margit Henry (4)
    Johannes Winkler (4)
    Rosemarie Marchan (5)
    Luc Stoppini (7)
    Sieto Bosgra (9)
    Joost Westerhout (9)
    Miriam Verwei (9)
    Jaak Vilo (2) (3)
    Andreas Kortenkamp (8)
    Jürgen Hescheler (4)
    Ludwig Hothorn (10)
    Susanne Bremer (6)
    Christoph van Thriel (5)
    Karl-Heinz Krause (7)
    Jan G. Hengstler (5)
    J?rg Rahnenführer (11)
    Marcel Leist (1)
    Agapios Sachinidis (4)
  • 关键词:Methylmercury ; Valproic acid ; Transcription factor ; Reproductive toxicity ; Alternative testing strategies
  • 刊名:Archives of Toxicology
  • 出版年:2013
  • 出版时间:January 2013
  • 年:2013
  • 卷:87
  • 期:1
  • 页码:123-143
  • 全文大小:1270KB
  • 参考文献:1. Adler S, Basketter D, Creton S et al (2011) Alternative (non-animal) methods for cosmetics testing: current status and future prospects-2010. Arch Toxicol 85(5):367-85 CrossRef
    2. Aschner M, Syversen T, Souza DO, Rocha JB, Farina M (2007) Involvement of glutamate and reactive oxygen species in methylmercury neurotoxicity. Braz J Med Biol Res 40(3):285-91 CrossRef
    3. Bakir F, Damluji SF, Amin-Zaki L et al (1973) Methylmercury poisoning in Iraq. Science 181(4096):230-41 CrossRef
    4. Balmer NV, Weng MK, Zimmer B et al (2012) Epigenetic changes and disturbed neural development in a human embryonic stem cell-based model relating to the fetal valproate syndrome. Hum Mol Genet 21(18):4104-114 mg/dds239">CrossRef
    5. Barberi T, Klivenyi P, Calingasan NY et al (2003) Neural subtype specification of fertilization and nuclear transfer embryonic stem cells and application in parkinsonian mice. Nat Biotechnol 21(10):1200-207 CrossRef
    6. Basketter DA, Clewell H, Kimber I et al (2012) A roadmap for the development of alternative (non-animal) methods for systemic toxicity testing—t4 report*. ALTEX 29(1):3-1
    7. Binkerd PE, Rowland JM, Nau H, Hendrickx AG (1988) Evaluation of valproic acid (VPA) developmental toxicity and pharmacokinetics in Sprague-Dawley rats. Fundam Appl Toxicol 11(3):485-93 CrossRef
    8. Bornhausen M, Musch HR, Greim H (1980) Operant behavior performance changes in rats after prenatal methylmercury exposure. Toxicol Appl Pharmacol 56(3):305-10 CrossRef
    9. Carrier G, Brunet RC, Caza M, Bouchard M (2001) A toxicokinetic model for predicting the tissue distribution and elimination of organic and inorganic mercury following exposure to methyl mercury in animals and humans. I. Development and validation of the model using experimental data in rats. Toxicol Appl Pharmacol 171(1):38-9 CrossRef
    10. Castoldi AF, Onishchenko N, Johansson C et al (2008) Neurodevelopmental toxicity of methylmercury: Laboratory animal data and their contribution to human risk assessment. Regul Toxicol Pharmacol 51(2):215-29 CrossRef
    11. Chambers SM, Fasano CA, Papapetrou EP, Tomishima M, Sadelain M, Studer L (2009) Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotechnol 27(3):275-80 CrossRef
    12. Chen PS, Wang CC, Bortner CD et al (2007) Valproic acid and other histone deacetylase inhibitors induce microglial apoptosis and attenuate lipopolysaccharide-induced dopaminergic neurotoxicity. Neuroscience 149(1):203-12 CrossRef
    13. Choi BH (1989) The effects of methylmercury on the developing brain. Prog Neurobiol 32(6):447-70 CrossRef
    14. Chow S, Rodgers P (2005) Extended abstract: constructing area-proportional Venn and Euler diagrams with three circles. Paper presented at the Euler diagrams workshop 2005, Paris
    15. Davidson PW, Myers GJ, Weiss B (2004) Mercury exposure and child development outcomes. Pediatrics 113(4 Suppl):1023-029
    16. Ekino S, Susa M, Ninomiya T, Imamura K, Kitamura T (2007) Minamata disease revisited: an update on the acute and chronic manifestations of methyl mercury poisoning. J Neurol Sci 262(1-):131-44 CrossRef
    17. Elkon R, Linhart C, Sharan R, Shamir R, Shiloh Y (2003) Genome-wide in silico identification of transcriptional regulators controlling the cell cycle in human cells. Genome Res 13(5):773-80 CrossRef
    18. Forsby A, Blaauboer B (2007) Integration of in vitro neurotoxicity data with biokinetic modelling for the estimation of in vivo neurotoxicity. Hum Exp Toxicol 26(4):333-38 CrossRef
    19. Gaspar JA, Doss MX, Winkler J et al (2012) Gene expression signatures defining fundamental biological processes in pluripotent, early, and late differentiated embryonic stem cells. Stem Cells Dev 21(13):2471-484 CrossRef
    20. Grandjean P, Herz KT (2011) Methylmercury and brain development: imprecision and underestimation of developmental neurotoxicity in humans. Mt Sinai J Med 78(1):107-18 msj.20228">CrossRef
    21. Grandjean P, Landrigan PJ (2006) Developmental neurotoxicity of industrial chemicals. Lancet 368(9553):2167-178 CrossRef
    22. Gray DG (1995) A physiologically based pharmacokinetic model for methyl mercury in the pregnant rat and fetus. Toxicol Appl Pharmacol 132(1):91-02 CrossRef
    23. Gulden M, Seibert H (2003) In vitro-in vivo extrapolation: estimation of human serum concentrations of chemicals equivalent to cytotoxic concentrations in vitro. Toxicology 189(3):211-22 CrossRef
    24. Harada M (1995) Minamata disease: methylmercury poisoning in Japan caused by environmental pollution. Crit Rev Toxicol 25(1):1-4 CrossRef
    25. Harbron C, Chang KM, South MC (2007) RefPlus: an R package extending the RMA Algorithm. Bioinformatics 23(18):2493-494 matics/btm357">CrossRef
    26. Hartung T, Leist M (2008) Food for thought-on the evolution of toxicology and the phasing out of animal testing. ALTEX 25(2):91-02
    27. Ingram JL, Peckham SM, Tisdale B, Rodier PM (2000) Prenatal exposure of rats to valproic acid reproduces the cerebellar anomalies associated with autism. Neurotoxicol Teratol 22(3):319-24 CrossRef
    28. Irizarry RA, Hobbs B, Collin F et al (2003) Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4(2):249-64 CrossRef
    29. Jagtap S, Meganathan K, Gaspar J et al (2011) Cytosine arabinoside induces ectoderm and inhibits mesoderm expression in human embryonic stem cells during multilineage differentiation. Br J Pharmacol 162(8):1743-756 CrossRef
    30. Jergil M, Kultima K, Gustafson AL, Dencker L, Stigson M (2009) Valproic acid-induced deregulation in vitro of genes associated in vivo with neural tube defects. Toxicol Sci 108(1):132-48 CrossRef
    31. Kadereit S, Zimmer B, van Thriel C, Hengstler JG, Leist M (2012) Compound selection for in vitro modeling of developmental neurotoxicity. Front Biosci 17:2442-460 CrossRef
    32. Klaassen CD (ed) (2010) Casarett and Doull’s toxicology: the basic science of poisons, 7th edn. McGraw-Hill, New York
    33. Kobayashi S, Takai K, Iga T, Hanano M (1991) Pharmacokinetic analysis of the disposition of valproate in pregnant rats. Drug Metab Dispos 19(5):972-76
    34. Kuegler PB, Zimmer B, Waldmann T et al (2010) Markers of murine embryonic and neural stem cells, neurons and astrocytes: reference points for developmental neurotoxicity testing. ALTEX 27(1):17-2
    35. Kuegler PB, Baumann BA, Zimmer B et al (2012) GFAP-independent inflammatory competence and trophic functions of astrocytes generated from murine embryonic stem cells. Glia 60(2):218-28 CrossRef
    36. Leist M, Bremer S, Brundin P et al (2008a) The biological and ethical basis of the use of human embryonic stem cells for in vitro test systems or cell therapy. ALTEX 25(3):163-90
    37. Leist M, Hartung T, Nicotera P (2008b) The dawning of a new age of toxicology. ALTEX 25(2):103-14
    38. Leist M, Efremova L, Karreman C (2010) Food for thought-considerations and guidelines for basic test method descriptions in toxicology. ALTEX 27(4):309-17
    39. Leist M, Hasiwa N, Daneshian M, Hartung T (2012) Validation and quality control of replacement alternatives—current status and future challenges. Toxicol Res 1:8-2 CrossRef
    40. Loscher W (1978) Serum protein binding and pharmacokinetics of valproate in man, dog, rat and mouse. J Pharmacol Exp Ther 204(2):255-61
    41. Louisse J, de Jong E, van de Sandt JJ et al (2010) The use of in vitro toxicity data and physiologically based kinetic modeling to predict dose-response curves for in vivo developmental toxicity of glycol ethers in rat and man. Toxicol Sci 118(2):470-84 CrossRef
    42. Makris SL, Raffaele K, Allen S et al (2009) A retrospective performance assessment of the developmental neurotoxicity study in support of OECD test guideline 426. Environ Health Perspect 117(1):17-5
    43. Meganathan K, Jagtap S, Wagh V et al (2012) Identification of Thalidomide-Specific Transcriptomics and Proteomics Signatures during Differentiation of Human Embryonic Stem Cells. PLoS One 7(8):e44228 CrossRef
    44. R_Development_Core_Team (2011) A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna
    45. Reimand J, Kull M, Peterson H, Hansen J, Vilo J (2007) g:Profiler–a web-based toolset for functional profiling of gene lists from large-scale experiments. Nucleic Acids Res 35(Web Server issue):W193–W200
    46. Robinson JF, Theunissen PT, van Dartel DA, Pennings JL, Faustman EM, Piersma AH (2011) Comparison of MeHg-induced toxicogenomic responses across in vivo and in vitro models used in developmental toxicology. Reprod Toxicol 32(2):180-88 CrossRef
    47. Rodier PM, Ingram JL, Tisdale B, Nelson S, Romano J (1996) Embryological origin for autism: developmental anomalies of the cranial nerve motor nuclei. J Comp Neurol 370(2):247-61 CrossRef
    48. Rotroff DM, Wetmore BA, Dix DJ et al (2010) Incorporating human dosimetry and exposure into high-throughput in vitro toxicity screening. Toxicol Sci 117(2):348-58 CrossRef
    49. Schmidt M, Bohm D, von Torne C et al (2008) The humoral immune system has a key prognostic impact in node-negative breast cancer. Cancer Res 68(13):5405-413 CrossRef
    50. Schmidt M, Hellwig B, Hammad S et al (2012) A comprehensive analysis of human gene expression profiles identifies stromal immunoglobulin kappa C as a compatible prognostic marker in human solid tumors. Clin Cancer Res 18(9):2695-703 CrossRef
    51. Scholz D, Poltl D, Genewsky A et al (2011) Rapid, complete and large-scale generation of post-mitotic neurons from the human LUHMES cell line. J Neurochem 119(5):957-71
    52. Seiler A, Oelgeschlager M, Liebsch M et al (2011) Developmental toxicity testing in the 21st century: the sword of Damocles shattered by embryonic stem cell assays? Arch Toxicol 85(11):1361-372 CrossRef
    53. Shannon P, Markiel A, Ozier O et al (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13(11):2498-504 CrossRef
    54. Smoot ME, Ono K, Ruscheinski J, Wang PL, Ideker T (2011) Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics 27(3):431-32 matics/btq675">CrossRef
    55. Smyth GK, Gentleman R, Carey V, Dudoit S, Irizarry R, Huber W (2005) Limma: linear models for microarray data. Bioinformatics and Computational Biology Solutions using R and Bioconductor, Springer, New York, pp 397-20
    56. Stiegler NV, Krug AK, Matt F, Leist M (2011) Assessment of chemical-induced impairment of human neurite outgrowth by multiparametric live cell imaging in high-density cultures. Toxicol Sci 121(1):73-7 CrossRef
    57. Stummann TC, Hareng L, Bremer S (2009) Hazard assessment of methylmercury toxicity to neuronal induction in embryogenesis using human embryonic stem cells. Toxicology 257(3):117-26 CrossRef
    58. Theunissen PT, Robinson JF, Pennings JL et al (2012a) Transcriptomic concentration-response evaluation of valproic acid, cyproconazole, and hexaconazole in the neural embryonic stem cell test (ESTn). Toxicol Sci 125(2):430-38 CrossRef
    59. Theunissen PT, Robinson JF, Pennings JL, van Herwijnen MH, Kleinjans JC, Piersma AH (2012b) Compound-specific effects of diverse neurodevelopmental toxicants on global gene expression in the neural embryonic stem cell test (ESTn). Toxicol Appl Pharmacol 262(3):330-40 CrossRef
    60. Ulitsky I, Maron-Katz A, Shavit S et al (2010) Expander: from expression microarrays to networks and functions. Nat Protoc 5(2):303-22 CrossRef
    61. van Thriel C, Westerink RH, Beste C, Bale AS, Lein PJ, Leist M (2012) Translating neurobehavioural endpoints of developmental neurotoxicity tests into in vitro assays and readouts. Neurotoxicology 33(4):911-24 CrossRef
    62. Verwei M, van Burgsteden JA, Krul CA, van de Sandt JJ, Freidig AP (2006) Prediction of in vivo embryotoxic effect levels with a combination of in vitro studies and PBPK modelling. Toxicol Lett 165(1):79-7 CrossRef
    63. Wang C, Luan Z, Yang Y, Wang Z, Cui Y, Gu G (2011) Valproic acid induces apoptosis in differentiating hippocampal neurons by the release of tumor necrosis factor-alpha from activated astrocytes. Neurosci Lett 497(2):122-27 CrossRef
    64. Weng MK, Zimmer B, Poltl D et al (2012) Extensive transcriptional regulation of chromatin modifiers during human neurodevelopment. PLoS One 7(5):e36708 CrossRef
    65. Werler MM, Ahrens KA, Bosco JL et al (2011) Use of antiepileptic medications in pregnancy in relation to risks of birth defects. Ann Epidemiol 21(11):842-50 m.2011.08.002">CrossRef
    66. Wetmore BA, Wambaugh JF, Ferguson SS et al (2012) Integration of dosimetry, exposure, and high-throughput screening data in chemical toxicity assessment. Toxicol Sci 125(1):157-74 CrossRef
    67. Zimmer B, Kuegler PB, Baudis B et al (2011a) Coordinated waves of gene expression during neuronal differentiation of embryonic stem cells as basis for novel approaches to developmental neurotoxicity testing. Cell Death Differ 18(3):383-95 CrossRef
    68. Zimmer B, Schildknecht S, Kuegler PB, Tanavde V, Kadereit S, Leist M (2011b) Sensitivity of dopaminergic neuron differentiation from stem cells to chronic low-dose methylmercury exposure. Toxicol Sci 121(2):357-67 CrossRef
    69. Zimmer B, Lee G, Balmer NV et al (2012) Evaluation of developmental toxicants and signaling pathways in a functional test based on the migration of human neural crest cells. Environ Health Perspect 120(8):1116-122 CrossRef
  • 作者单位:Anne K. Krug (1)
    Raivo Kolde (2) (3)
    John A. Gaspar (4)
    Eugen Rempel (11)
    Nina V. Balmer (1)
    Kesavan Meganathan (4)
    Kinga Vojnits (6)
    Mathurin Baquié (7)
    Tanja Waldmann (1)
    Roberto Ensenat-Waser (6)
    Smita Jagtap (4)
    Richard M. Evans (8)
    Stephanie Julien (7)
    Hedi Peterson (7)
    Dimitra Zagoura (6)
    Suzanne Kadereit (1)
    Daniel Gerhard (10)
    Isaia Sotiriadou (4)
    Michael Heke (4)
    Karthick Natarajan (4)
    Margit Henry (4)
    Johannes Winkler (4)
    Rosemarie Marchan (5)
    Luc Stoppini (7)
    Sieto Bosgra (9)
    Joost Westerhout (9)
    Miriam Verwei (9)
    Jaak Vilo (2) (3)
    Andreas Kortenkamp (8)
    Jürgen Hescheler (4)
    Ludwig Hothorn (10)
    Susanne Bremer (6)
    Christoph van Thriel (5)
    Karl-Heinz Krause (7)
    Jan G. Hengstler (5)
    J?rg Rahnenführer (11)
    Marcel Leist (1)
    Agapios Sachinidis (4)

    1. Department of Biology, University of Konstanz (UKN), 78457, Constance, Germany
    2. Oü Quretec (Qure), Limited Liability Company, 51003, Tartu, Estonia
    3. Institute of Computer Science, University of Tartu, 50409, Tartu, Estonia
    4. Center of Physiology and Pathophysiology, Institute of Neurophysiology, University of Cologne (UKK), Robert-Koch-Str. 39, 50931, Cologne, Germany
    11. Department of Statistics, TU Dortmund University, 44221, Dortmund, Germany
    6. Commission of the European Communities (JRC) Joint Research Centre, 1049, Brussels, Belgium
    7. Department of Pathology and Immunology, Geneva Medical Faculty, University of Geneva (UNIGE), 1211, Geneva 4, Switzerland
    8. Brunel University (Brunel), Uxbridge, UB8 3PH, UK
    10. Gottfried Wilhelm Leibniz University (LUH), Institute for Biostatistics, 30167, Hannover, Germany
    5. Leibniz Research Centre for Working Environment and Human Factors (IfADo), Technical University of Dortmund, 44139, Dortmund, Germany
    9. Nederlandse Organisatie voor Toegepast Natuurwetenschappelijk Onderzoek (TNO), 2628 VK, Delft, The Netherlands
  • ISSN:1432-0738
文摘
Developmental neurotoxicity (DNT) and many forms of reproductive toxicity (RT) often manifest themselves in functional deficits that are not necessarily based on cell death, but rather on minor changes relating to cell differentiation or communication. The fields of DNT/RT would greatly benefit from in vitro tests that allow the identification of toxicant-induced changes of the cellular proteostasis, or of its underlying transcriptome network. Therefore, the ‘human embryonic stem cell (hESC)-derived novel alternative test systems (ESNATS)-European commission research project established RT tests based on defined differentiation protocols of hESC and their progeny. Valproic acid (VPA) and methylmercury (MeHg) were used as positive control compounds to address the following fundamental questions: (1) Does transcriptome analysis allow discrimination of the two compounds? (2) How does analysis of enriched transcription factor binding sites (TFBS) and of individual probe sets (PS) distinguish between test systems? (3) Can batch effects be controlled? (4) How many DNA microarrays are needed? (5) Is the highest non-cytotoxic concentration optimal and relevant for the study of transcriptome changes? VPA triggered vast transcriptional changes, whereas MeHg altered fewer transcripts. To attenuate batch effects, analysis has been focused on the 500 PS with highest variability. The test systems differed significantly in their responses (<20?% overlap). Moreover, within one test system, little overlap between the PS changed by the two compounds has been observed. However, using TFBS enrichment, a relatively large ‘common response-to VPA and MeHg could be distinguished from ‘compound-specific-responses. In conclusion, the ESNATS assay battery allows classification of human DNT/RT toxicants on the basis of their transcriptome profiles.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700