High level of microsynteny and purifying selection affect the evolution of WRKY family in Gramineae
详细信息    查看全文
  • 作者:Jing Jin ; Jingjing Kong ; Jianle Qiu ; Huasheng Zhu…
  • 关键词:Microsynteny ; Gramineae ; Molecular evolution ; WRKY Gene
  • 刊名:Development Genes and Evolution
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:226
  • 期:1
  • 页码:15-25
  • 全文大小:4,809 KB
  • 参考文献:Alexandrova KS, Conger BV (2002) Isolation of two somatic embryogenesis-related genes from orchardgrass (Dactylis glomerata). Plant Sci 162:301–307. doi:10.​1016/​S0168-9452(01)00571-4 CrossRef
    Baldoni E et al (2013) Analysis of transcript and metabolite levels in Italian rice (Oryza sativa L.) cultivars subjected to osmotic stress or benzothiadiazole treatment. Plant Physiol Biochem 70:492–503. doi:10.​1016/​j.​plaphy.​2013.​06.​016 CrossRef PubMed
    Bennetzen JL (2000) Comparative sequence analysis of plant nuclear genomes: microcolinearity and its many exceptions. Plant Cell 12:1021–1029PubMedCentral CrossRef PubMed
    Blanc G, Wolfe KH (2004) Widespread paleopolyploidy in model plant species inferred from age distributions of duplicate genes. Plant Cell 16:1667–1678. doi:10.​1105/​tpc.​021345 PubMedCentral CrossRef PubMed
    de Pater S, Greco V, Pham K, Memelink J, Kijne J (1996) Characterization of a zinc-dependent transcriptional activator from Arabidopsis. Nucleic Acids Res 24:4624–4631PubMedCentral CrossRef PubMed
    Deleu W, Gonzalez V, Monfort A, Bendahmane A, Puigdomenech P, Arus P, Garcia-Mas J (2007) Structure of two melon regions reveals high microsynteny with sequenced plant species. Mol Genet Genomics 278:611–622. doi:10.​1007/​s00438-007-0277-2 CrossRef PubMed
    Devos KM, Gale MD (2000) Genome relationships: the grass model in current research. Plant Cell 12:637–646PubMedCentral CrossRef PubMed
    Eulgem T, Rushton PJ, Robatzek S, Somssich IE (2000) The WRKY superfamily of plant transcription factors. Trends Plant Sci 5:199–206CrossRef PubMed
    Finn RD et al (2006) Pfam: clans, web tools and services. Nucleic Acids Res 34:D247–D251. doi:10.​1093/​Nar/​Gkj149 PubMedCentral CrossRef PubMed
    Gaut BS (2001) Patterns of chromosomal duplication in maize and their implications for comparative maps of the grasses. Genome Res 11:55–66PubMedCentral CrossRef PubMed
    Gaut BS, Morton BR, McCaig BC, Clegg MT (1996) Substitution rate comparisons between grasses and palms: synonymous rate differences at the nuclear gene Adh parallel rate differences at the plastid gene rbcL. Proc Natl Acad Sci U S A 93:10274–10279PubMedCentral CrossRef PubMed
    Hara K, Yagi M, Kusano T, Sano H (2000) Rapid systemic accumulation of transcripts encoding a tobacco WRKY transcription factor upon wounding. Mol Gen Genet 263:30–37CrossRef PubMed
    Irimia M et al (2012) Extensive conservation of ancient microsynteny across metazoans due to cis-regulatory constraints. Genome Res 22:2356–2367. doi:10.​1101/​gr.​139725.​112 PubMedCentral CrossRef PubMed
    Ishiguro S, Nakamura K (1994) Characterization of a cDNA encoding a novel DNA-binding protein, SPF1, that recognizes SP8 sequences in the 5' upstream regions of genes coding for sporamin and beta-amylase from sweet potato. Mol Gen Genet 244:563–571CrossRef PubMed
    Kim CY et al (2000) Identification of rice blast fungal elicitor-responsive genes by differential display analysis. Mol Plant-Microbe Interact 13:470–474. doi:10.​1094/​Mpmi.​2000.​13.​4.​470 CrossRef PubMed
    Lai J et al (2004) Gene loss and movement in the maize genome. Genome Res 14:1924–1931. doi:10.​1101/​gr.​2701104 PubMedCentral CrossRef PubMed
    Letunic I, Doerks T, Bork P (2012) SMART 7: recent updates to the protein domain annotation resource. Nucleic Acids Res 40:D302–D305. doi:10.​1093/​nar/​gkr931 PubMedCentral CrossRef PubMed
    Li Z et al (2014) Molecular evolution of the HD-ZIP I gene family in legume genomes. Gene 533:218–228. doi:10.​1016/​j.​gene.​2013.​09.​084 CrossRef PubMed
    Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452. doi:10.​1093/​bioinformatics/​btp187 CrossRef PubMed
    Maher C, Stein L, Ware D (2006) Evolution of Arabidopsis microRNA families through duplication events. Genome Res 16:510–519. doi:10.​1101/​Gr.​4680506 PubMedCentral CrossRef PubMed
    McDonald JH, Kreitman M (1991) Adaptive protein evolution at the Adh locus in Drosophila. Nature 351:652–654. doi:10.​1038/​351652a0 CrossRef PubMed
    Paterson AH, Bowers JE, Chapman BA (2004) Ancient polyploidization predating divergence of the cereals, and its consequences for comparative genomics. Proc Natl Acad Sci U S A 101:9903–9908. doi:10.​1073/​pnas.​0307901101 PubMedCentral CrossRef PubMed
    Rushton PJ, Macdonald H, Huttly AK, Lazarus CM, Hooley R (1995) Members of a new family of DNA-binding proteins bind to a conserved cis-element in the promoters of alpha-Amy2 genes. Plant Mol Biol 29:691–702CrossRef PubMed
    Salse J et al (2008) Identification and characterization of shared duplications between rice and wheat provide new insight into grass genome evolution. Plant Cell 20:11–24. doi:10.​1105/​tpc.​107.​056309 PubMedCentral CrossRef PubMed
    Sato S et al (2008) Genome structure of the legume, Lotus japonicus DNA Res 15:227–239 doi:10.​1093/​dnares/​dsn008
    Sun C, Palmqvist S, Olsson H, Boren M, Ahlandsberg S, Jansson C (2003) A novel WRKY transcription factor, SUSIBA2, participates in sugar signaling in barley by binding to the sugar-responsive elements of the iso1 promoter. Plant Cell 15:2076–2092PubMedCentral CrossRef PubMed
    Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739. doi:10.​1093/​molbev/​msr121 PubMedCentral CrossRef PubMed
    Ulker B, Somssich IE (2004) WRKY transcription factors: from DNA binding towards biological function. Curr Opin Plant Biol 7:491–498. doi:10.​1016/​j.​pbi.​2004.​07.​012 CrossRef PubMed
    Wei F et al (2007) Physical and genetic structure of the maize genome reflects its complex evolutionary history. PLoS Genet 3:e123. doi:10.​1371/​journal.​pgen.​0030123 PubMedCentral CrossRef PubMed
    Wei KF, Chen J, Chen YF, Wu LJ, Xie DX (2012) Molecular Phylogenetic and Expression Analysis of the Complete WRKY Transcription Factor Family in Maize DNA Research 19:153–164 doi:DOI 10.​1093/​dnares/​dsr048
    Wendel JF (2000) Genome evolution in polyploids. Plant Mol Biol 42:225–249CrossRef PubMed
    Wilkins MR, Gasteiger E, Bairoch A, Sanchez JC, Williams KL, Appel RD, Hochstrasser DF (1999) Protein identification and analysis tools in the ExPASy server. Methods Mol Biol 112:531–552PubMed
    Zhu XL, Liu SW, Meng C, Qin LM, Kong LN, Xia GM (2013) WRKY transcription factors in wheat and their induction by biotic and abiotic stress. Plant Mol Biol Rep 31:1053–1067. doi:10.​1007/​s11105-013-0565-4 CrossRef
  • 作者单位:Jing Jin (1)
    Jingjing Kong (1)
    Jianle Qiu (1)
    Huasheng Zhu (1)
    Yuancheng Peng (1)
    Haiyang Jiang (1)

    1. Key Laboratory of Crop Biology of Anhui Province, Collaborative Innovation Center of Anhui Grain Crops, Anhui Agricultural University, Hefei, China
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Developmental Biology
    Neurosciences
    Cell Biology
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-041X
文摘
The WRKY gene family, which encodes proteins in the regulation processes of diverse developmental stages, is one of the largest families of transcription factors in higher plants. In this study, by searching for interspecies gene colinearity (microsynteny) and dating the age distributions of duplicated genes, we found 35 chromosomal segments of subgroup I genes of WRKY family (WRKY I) in four Gramineae species (Brachypodium, rice, sorghum, and maize) formed eight orthologous groups. After a stepwise gene-by-gene reciprocal comparison of all the protein sequences in the WRKY I gene flanking areas, highly conserved regions of microsynteny were found in the four Gramineae species. Most gene pairs showed conserved orientation within syntenic genome regions. Furthermore, tandem duplication events played the leading role in gene expansion. Eventually, environmental selection pressure analysis indicated strong purifying selection for the WRKY I genes in Gramineae, which may have been followed by gene loss and rearrangement. The results presented in this study provide basic information of Gramineae WRKY I genes and form the foundation for future functional studies of these genes. High level of microsynteny in the four grass species provides further evidence that a large-scale genome duplication event predated speciation. Keywords Microsynteny Gramineae Molecular evolution WRKY Gene

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700