Properties, structure, and applications of microbial sterol esterases
详细信息    查看全文
  • 作者:Maria Eugenia Vaquero ; Jorge Barriuso…
  • 关键词:Sterol esterase ; Biocatalysts ; Hydrophobic enzymes ; Bacteria ; Fungi
  • 刊名:Applied Microbiology and Biotechnology
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:100
  • 期:5
  • 页码:2047-2061
  • 全文大小:1,315 KB
  • 参考文献:Abo M, Andersen BK, Borch K, Damgaard B (1999) A method of treating polyester fabrics. Patent No. WO 1999001604 A1
    Allain CC, Poon LS, Chan CSG, Richmond W, Fu PC (1974) Enzymatic determination of total serum-cholesterol. Clin Chem 20:470–475PubMed
    Appel W (1986) Chymotrypsin: molecular and catalytic properties. Clin Biochem 19:317–322CrossRef PubMed
    Barba Cedillo V, Plou FJ, Martínez MJ (2012) Recombinant sterol esterase from Ophiostoma piceae: an improved biocatalyst expressed in Pichia pastoris. Microb Cell Fact 11:73PubMedCentral CrossRef
    Barba Cedillo V, Prieto A, Martínez AT, Martínez MJ (2013a) Procedimiento de acilación para la obtención de compuestos de interés alimenticio y/o farmacéutico utilizando esterol esterasas fúngicas. Patent (International) PCT/ ES 2395582 B1
    Barba Cedillo V, Prieto A, Martínez MJ (2013b) Potential of Ophiostoma piceae sterol esterase for biotechnologically relevant hydrolysis reactions. Bioengineered 4:249–253PubMedCentral CrossRef PubMed
    Barfoed M (1994) A method of hydrolysing cholesterol sters by using a Pseudomonas fragi cholesterol esterase. Patent No. WO1994023052 A1
    Barriuso J, Prieto A, Martínez MJ (2013) Fungal genomes mining to discover novel sterol esterases and lipases as catalysts. BMC Genomics 14:712–719PubMedCentral CrossRef PubMed
    Basheer S, Plat D (2004) Enzymatic modification of sterols using sterol-specific lipase. Patent No. US 2004/0105931 A1
    Brockerhoff H, Jensen RG (1974) Lipolytic enzymes. Academic Press, New YorkCrossRef
    Calero-Rueda O, Gutiérrez A, del Río JC, Muñoz MC, Plou FJ, Martínez ÁT, Martínez MJ (2002a) Method for the enzymatic control of pitch deposits formed during paper pulp production using an esterase that hydrolyses triglycerides and sterol esters. Patent No. WO 02/075045 A1R1
    Calero-Rueda O, Plou FJ, Ballesteros A, Martínez AT, Martínez MJ (2002b) Production, isolation and characterization of a sterol esterase from Ophiostoma piceae. BBA Proteins Proteomics 1599:28–35CrossRef PubMed
    Calero-Rueda O, Gutiérrez A, del Río JC, Prieto A, Plou FJ, Ballesteros A, Martínez AT, Martínez MJ (2004) Hydrolysis of sterol esters by an esterase from Ophiostoma piceae: application for pitch control in pulping of Eucalyptus globulus wood. Intern J Biotechnol 6:367–375CrossRef
    Calero-Rueda O, Barba V, Rodriguez E, Plou F, Martínez AT, Martínez MJ (2009) Study of a sterol esterase secreted by Ophiostoma piceae: sequence, model and biochemical properties. Biochim Biophys Acta 1794:1099–1106CrossRef PubMed
    Cantrill R, Kawamura Y (2008) Phytosterols, phytostanols and their esters: chemical and technical assessment for the 69th Joint FAO/ WHO Expert Committee on Food Additives (JECFA)
    Chang SW, Lee GC, Shaw JF (2006a) Codon optimization of Candida rugosa lip1 gene for improving expression in Pichia pastoris and biochemical characterization of the purified recombinant LIP1 lipase. J Agr Food Chem 54:815–822CrossRef
    Chang SW, Lee GC, Shaw JF (2006b) Efficient production of active recombinant Candida rugosa LIP3 lipase in Pichia pastoris and biochemical characterization of purified enzyme. J Agr Food Chem 54:5831–5838CrossRef
    Charton E, Macrae AR (1992) Substrate specificities of lipases A and B from Geotrichum candidum CMICC 335426. Biochim Biophys Acta 1123:59–64CrossRef PubMed
    Coenye T, Vandamme P, Govan JRW, Lipuma JJ (2001) Taxonomy and identification of the Burkholderia cepacia complex. J Clin Microbiol 39:3427–3436PubMedCentral CrossRef PubMed
    Domsch KH, Gams W, Anderson T-H (1993) Compendium of soil fungi. IHW-Verlag, Eching, Germany
    Du L, Huo Y, Ge F, Yu J, Li W, Cheng G, Yong B, Zeng L, Huang M (2010) Purification and characterization of a novel extracellular cholesterol esterase from Acinetobacter sp. J Basic Microb 50:S30–S36CrossRef
    Ferrer P, Montesinos JL, Valero F, Sola C (2001) Production of native and recombinant lipases by Candida rugosa—a review. Appl Biochem Biotechnol 95:221–255CrossRef PubMed
    Ferrer P, Alarcón M, Ramón R, Benaiges MD, Valero F (2009) Recombinant Candida rugosa LIP2 expression in Pichia pastoris under the control of the AOX1 promoter. Biochem Eng J 46:271–277CrossRef
    Ghosh D, Wawrzak Z, Pletnev VZ, Li N, Kaiser R, Pangborn W, Jörnvall H, Erman M, Duax WL (1995) Structure of uncomplexed and linoleate-bound Candida cylindracea cholesterol esterase. Structure 3:279–288CrossRef PubMed
    Gray GL, Poulose AJ, Power SD (1992) Novel hydrolase and method of production. Patent No. EP0268452 A2
    Grochulski P, Li YG, Schrag JD, Bouthillier F, Smith P, Harrison D, Rubin B, Cygler M (1993) Insights into interfacial activation from an open structure of Candida rugosa lipase. J Biol Chem 268:12843–12847PubMed
    Grochulski P, Li Y, Schrag JD, Cygler M (1994) Two conformational states of Candida rugosa lipase. Protein Sci 3:82–91PubMedCentral CrossRef PubMed
    Gubitz GM, Paulo AC (2003) New substrates for reliable enzymes: enzymatic modification of polymers. Curr Opin Biotech 14:577–582CrossRef PubMed
    Gutiérrez A, del Río JC, Martínez MJ, Martínez AT (2001) The biotechnological control of pitch in paper pulp manufacturing. Trends Biotechnol 19:340–348CrossRef PubMed
    Gutiérrez A, del Río JC, Martínez AT (2009) Microbial and enzymatic control of pitch in the pulp and paper industry. Appl Microbiol Biotechnol 82:1005–1018CrossRef PubMed
    Gutiérrez-Fernández J, Vaquero ME, Prieto A, Barriuso J, Martínez MJ, Hermoso JA (2014) Crystal structures of Ophiostoma piceae sterol esterase: structural insights into activation mechanism and product release. J Struct Biol 187:215–222CrossRef PubMed
    Harvie NR (1977) Cholesteryl de-esterifying enzyme from Staphylococcus aureus: separation from alpha toxin, purification, and some properties. Infect Immun 15:863–870PubMedCentral PubMed
    Hasan F, Shah AA, Hameed A (2006) Industrial applications of microbial lipases. Enzyme Microb Technol 39:235–251CrossRef
    Hata K, Matsukura M, Taneda H, Fujita Y (1996) Mill-scale application of enzymatic pitch control during paper production. In: Viikari L, Jeffries TW (eds) Enzymes for pulp and paper processing. ACS, Washington, pp 280–296CrossRef
    Hermoso J, Pignol D, Kerfelec B, Crenon I, Chapus C, Fontecilla Camps JC (1996) Lipase activation by nonionic detergents the crystal structure of the porcine lipase-colipase-tetraethylene glycol monooctyl ether complex. J Biol Chem 271:18007–18016CrossRef PubMed
    Jaeger KE, Reetz MT (1998) Microbial lipases form versatile tools for biotechnology. Trends Biotechnol 16:396–403CrossRef PubMed
    Juniper BE, Jeffree CE (1983) Plant surfaces. Eduard Arnold, Baltimore
    Kaiser R, Erman M, Duax WL, Ghosh D, Jörnwall H (1994) Monomeric and dimeric forms of cholesterol esterase from Candida cylindracea. FEBS Lett 337:123–127CrossRef PubMed
    Kamei T, Suzuki H, Matsuzaki M, Otani T, Kondo H, Nakamura S (1977) Cholesterol esterase produced by Streptomyces lavendulae. Chem Pharm Bull 25:3190–3197CrossRef PubMed
    Kamei T, Suzuki H, Asano K, Matsuzaki M, Nakamura S (1979) Cholesterol esterase produced by Streptomyces lavendulae II. Purification and properties as a lipolytic enzyme. Chem Pharm Bull 27:1704–1707CrossRef
    Kim KK, Song HK, Shin DH, Hwang KY, Suh SW (1997) The crystal structure of a triacylglycerol lipase from Pseudomonas cepacia reveals a highly open conformation in the absence of a bound inhibitor. Structure 5:173–185CrossRef PubMed
    Köffel R, Tiwari R, Falquet L, Schneiter R (2005) The Saccharomyces cerevisiae YLL012/YEH1, YLR020/YEH2, and TGL1 genes encode a novel family of membrane-anchored lipases that are required for steryl ester hydrolysis. Mol Cell Biol 25:1655–1668PubMedCentral CrossRef PubMed
    Kokkonen P, Korpela A, Sundberg A, Holmbom B (2002) Effects of different types of lipophilic extractives on paper properties. Nord Pulp Pap Res J 17:382–386CrossRef
    Kokkonen P, Fardim P, Holmbom B (2004) Surface distribution of extractives on TMP handsheets analyzed by ESCA, ATR-IR, ToF-SIMS and ESEM. Nord Pulp Pap Res J 19:318–324CrossRef
    Kontkanen H, Tenkanen M, Fagerström R, Reinikainen T (2004) Characterisation of steryl esterase activities in commercial lipase preparations. J Biotechnol 108:51–59CrossRef PubMed
    Kontkanen H, Reinikainen T, Saloheimo M (2006a) Cloning and expression of a Melanocarpus albomyces steryl esterase gene in Pichia pastoris and Trichoderma reesei. Biotechnol Bioeng 94:407–415CrossRef PubMed
    Kontkanen H, Saloheimo M, Pere J, Miettinen-Oinonen A, Reinikainen T (2006b) Characterization of Melanocarpus albomyces steryl esterase produced in Trichoderma reesei and modification of fibre products with the enzyme. Appl Microbiol Biotechnol 72:696–704CrossRef PubMed
    Kontkanen H, Tenkanen M, Reinikainen T (2006c) Purification and characterisation of a novel steryl esterase from Melanocarpus albomyces. Enzyme Microb Technol 39:265–273CrossRef
    Lang D, Hofmann B, Haalck L, Hecht HJ, Spener F, Schmid RD, Schomburg D (1996) Crystal structure of a bacterial lipase from Chromobacterium viscosum ATCC 6918 refined at 1.6 angstrom resolution. J Mol Biol 259:704–717CrossRef PubMed
    Lee GC, Lee LC, Sava V, Shaw JF (2002) Multiple mutagenesis of non-universal serine codons of the Candida rugosa lip2 gene and biochemical characterization of purified recombinant LIP2 lipase overexpressed in Pichia pastoris. Biochem J 366:603–611PubMedCentral CrossRef PubMed
    Lee LC, Chen YT, Yen CC, Chiang TCY, Tang SJ, Lee GC, Shaw JF (2007) Altering the substrate specificity of Candida rugosa LIP4 by engineering the substrate-binding sites. J Agric Food Chem 55:5103–5108CrossRef PubMed
    Levisson M, van der Oost J, Kengen SW (2009) Carboxylic ester hydrolases from hyperthermophiles. Extremophiles 13:567–581PubMedCentral CrossRef PubMed
    López N, Pernas MA, Pastrana LM, Sánchez A, Rúa ML (2004) Reactivity of pure Candida rugosa lipase isoenzymes (Lip1, Lip2, and Lip3) in aqueous and organic media. Influence of the isoenzymatic profile on the lipase performance in organic media. Biotechnol Progr 20:65–73CrossRef
    Lotti M, Tramontano A, Longhi S, Fusetti F, Brocca S, Pizzi E, Alberghina L (1994) Variability within the Candida rugosa lipases family. Protein Eng 7:531–535CrossRef PubMed
    Madhosingh C, Orr W (1981) Sterol ester hydrolase in Fusarium oxysporum. Lipids 16:125–132CrossRef PubMed
    Maeda A, Mizuno T, Bunya M, Sugihara S, Nakayama D, Tsunasawa S, Hirota Y, Sugihara A (2008) Characterization of novel cholesterol esterase from Trichoderma sp. AS59 with high ability to synthesize steryl esters. J Biosci Bioeng 105:341–349CrossRef PubMed
    Mancheño JM, Pernas MA, Martínez MJ, Ochoa B, Rua ML, Hermoso JA (2003) Structural insights into the lipase/esterase behavior in the Candida rugosa lipases family: crystal structure of the lipase 2 isoenzyme at 1.97 Å resolution. J Mol Biol 332:1059–1069CrossRef PubMed
    Marcinkeviciene LY, Bakhmatova IV, Brazenas GR, Baratova LA, Revina LP (1994) Purification and properties of cholesterol esterase from Pseudomonas mendocina 3121. Biochemistry-Moscow 59:473–478
    Mas E, Lombardo D (1994) Pancreatic cholesteryl esterase in health and disease. In: Mackness MI, Clerc M (eds) Esterases, lipases and phospholipases. From structure to clinical significance. Plenum Press, New York, pp 75–81
    Masaki I, Yusuke N, Sadanori O (2003) Enzyme-containing detergent. Patent No. WO 2003066792 A1
    Mezzetti A, Schrag JD, Cheong CS, Kazlauskas RJ (2005) Mirror-image packing in enantiomer discrimination: molecular basis for the enantioselectivity of B. cepacia lipase toward 2-methyl-3-phenyl-1-propanol. Chem Biol 12:427–437CrossRef PubMed
    Mukherjee M (2003) Human digestive and metabolic lipases: a brief review. J Mol Catal B-Enzym 22:369–376CrossRef
    Mustranta A, Buchert J, Spetz P, Holmbom B (2001) Treatment of mechanical pulp and process waters with lipases. Nord Pulp Paper Res J 16:125–129CrossRef
    Negishi S, Hidaka I, Takahashi I, Kunita S (2003) Transesterification of phytosterol and edible oil by lipase powder at high temperature. J Am Oil Chem Soc 80:905–907CrossRef
    Nishimura M, Sugiyama M (1994) Cloning and sequence analysis of a Streptomyces cholesterol esterase gene. Appl Microbiol Biotechnol 41:419–424PubMed
    Noble MEM, Cleasby A, Johnson LN, Egmond MR, Frenken LGJ (1993) The crystal structure of triacylglycerol lipase from Pseudomonas glumae reveals a partially redundant catalytic aspartate. FEBS Lett 331:123–128CrossRef PubMed
    Norinobu S, Seo N, Sato F, Kaneko S, Mankura M (2003) Process for producing dietary sterol fatty acid esters. Patent No. US 6660491 B2
    Okawa Y, Yamaguchi T (1977) Studies on sterol-ester hydrolase from Fusarium oxysporum I partial purification and properties. J Biochem 81:1209–1215PubMed
    Panitch M (1997) Antiperspirant deodorant compositions. Patent No. US5635165 A
    Pernas MA, Lopez C, Pastrana L, Rua ML (2000) Purification and characterization of Lip2 and Lip3 isoenzymes from a Candida rugosa pilot-plant scale fed-batch fermentation. J Biotechnol 84:163–174CrossRef
    Pernas MA, Pastrana L, Fucinos P, Rua ML (2009) Regulation of the interfacial activation within the Candida rugosa lipase family. J Phys Org Chem 22:508–514CrossRef
    Peters J, Onguri V, Nishimoto SK, Marion TN, Byrne GI (2012) The Chlamydia trachomatis CT149 protein exhibits esterase activity in vitro and catalyzes cholesteryl ester hydrolysis when expressed in HeLa cells. Microbes Infect 14:1196–1204PubMedCentral CrossRef PubMed
    Plat J, Mensink RP (2005) Plant stanol and sterol esters in the control of blood cholesterol levels: mechanism and safety aspects. Am J Cardiol 96:15–22CrossRef
    Pleiss J, Fischer M, Schimd RD (1998) Anatomy of lipase binding sites: the scissile fatty acid binding site. Chem Phys Lipids 93:67–80CrossRef PubMed
    Pleiss J, Fischer M, Peiker M, Thiele C, Schmid RD (2000) Lipase engineering database: understanding and exploiting sequence-structure-function relationships. J Mol Catal B Enzym 10:491–508CrossRef
    Pollero R, Caspar M, Cabello M (1997) Lipolytic activity in free and immobilized cells of Phoma glomerata. J Am Oil Chem Soc 74:451–454CrossRef
    Pollero RJ, Gaspar ML, Cabello M (2001) Extracellular lipolytic activity in Phoma glomerata. World J Microb Biot 17:805–809CrossRef
    Rúa ML, Díaz-Mauriño T, Fernández VM, Otero C, Ballesteros A (1993) Purification and characterization of two distinct lipases from Candida cylindracea. Biochim Biophys Acta 1156:181–189CrossRef PubMed
    Rúa ML, Atomi H, Schmidt-Dannert C, Schmid RD (1998) High-level expression of the thermoalkalophilic lipase from Bacillus thermocatenulatus in Escherichia coli. Appl Microbiol Biotechnol 49:405–410CrossRef PubMed
    Rudd EA, Brockman HL (1984) Pancreatic carboxyl ester lipase (cholesterol esterase). In: Borgström B, Brockman HL (eds) Lipases. Elsevier Science Publishers, Amsterdam, pp 185–204
    Schrag JD, Cygler M (1993) 1.8 Å Refined structure of the lipase from Geotrichum candidum. J Mol Biol 230:575–591CrossRef PubMed
    Seo N, Kaneko S, Sato F, Norinobu S, Mankura M (2006) Process for producing edible sterol fatty acid esters. Patent No. US6989456 B2
    Shaw JF, Lee GC, Tang SJ (2009) Recombinant Candida rugosa lipases. Patent No. US 20090053795A1
    Simons JWFA, van Kampen MD, Ubarretxena-Belandia I, Cox RC, dos Santos CMA, Egmond MR, Verheij HM (1999) Identification of a calcium binding site in Staphylococcus hyicus lipase: generation of calcium-independent variants. Biochemistry-US 38:2–10CrossRef
    Søe JB, Jørgensen TL (2010) Method for producing phytosterol/phytostanol phospholipid esters. Patent No. WO2010109441 A1
    Sugihara A, Shimada Y, Nomura A, Terai T, Imayasu M, Nagai Y, Nagao T, Watanabe Y, Tominaga Y (2002) Purification and characterization of a novel cholesterol esterase from Pseudomonas aeruginosa, with its application to cleaning lipid-stained contact lenses. Biosci Biotech Bioch 66:2347–2355CrossRef
    Surinenaite B, Bendikiene V, Juodka B, Bachmatova I, Marcinkevichiene L (2002) Characterization and physicochemical properties of a lipase from Pseudomonas mendocina 3121–1. Biotechnol Appl Bioc 36:47–55CrossRef
    Svendsen A, Borch K, Barfoed M, Nielsen TB, Gormsen E, Patkar SA (1995) Biochemical properties of cloned lipases from the Pseudomonas family. BBA Lipid Lipid Met 1259:9–17CrossRef
    Takeda Y, Aono R, Doukyu N (2006) Purification, characterization, and molecular cloning of organic-solvent-tolerant cholesterol esterase from cyclohexane-tolerant Burkholderia cepacia strain ST-200. Extremophiles 10:269–277CrossRef PubMed
    Tang SJ, Shaw JF, Sun KH, Sun GH, Chang TY, Lin CK, Lo YC, Lee GC (2001) Recombinant expression and characterization of the Candida rugosa LIP4 lipase in Pichia pastoris: comparison of glycosilation, activity, and stability. Arch Biochem Biophys 387:93–98CrossRef PubMed
    Tenkanen M, Kontkanen H, Isoniemi R, Spetz P, Holmbom B (2002) Hydrolysis of steryl esters by a lipase (Lip 3) from Candida rugosa. Appl Microbiol Biotechnol 60:120–127CrossRef PubMed
    Töke ER, Nagy V, Recseg K, Szakacs G, Poppe L (2007) Production and application of novel sterol esterases from Aspergillus strains by solid state fermentation. J Am Oil Chem Soc 84:907–915CrossRef
    Uwajima T, Terada O (1975) Studies on sterol-metabolism by microorganisms III. Purification and properties of extracellular cholesterol ester hydrolase of Pseudomonas fluorescens. Agr Biol Chem Tokyo 39:1511–1512CrossRef
    Uwajima T, Terada O (1976) Studies on sterol metabolism by microorganisms V. Purification and properties of cholesterol esterase from Pseudomonas fluorescens. Agr Biol Chem Tokyo 40:1957–1964CrossRef
    Vaquero ME, Barriuso J, Medrano F, Prieto A, Martinez MJ (2015a) Heterologous expression of a fungal sterol esterase/lipase in different hosts: effect on solubility, glycosylation and production. J Biosci Bioeng 129:637–643CrossRef
    Vaquero ME, Prieto A, Barriuso J, Martinez MJ (2015b) Expression and properties of three novel fungal lipases/sterol esterases predicted in silico: comparison with other enzymes of the Candida rugosa-like family. Appl Microbiol Biotechnol. doi:10.​1007/​s00253-015-6890-9 PubMed
    Vertommen MAME, Nierstrasz VA, van der Veer M, Warmoeskerken MMCG (2005) Enzymatic surface modification of poly(ethylene terephthalate). J Biotechnol 120:376–386CrossRef PubMed
    Villeneuve P, Turon F, Caro Y, Escoffier R, Baréa B, Barouh B, Lago R, Piombo G, Pina M (2005) Lipase-catalyzed synthesis of canola phytosterols oleate esters as cholesterol lowering agents. Enzyme Microb Tech 37:150–155CrossRef
    Weber N, Weitkamp P, Mukherjee KD (2001) Steryl and stanyl esters of fatty acids by solvent-free esterification and transesterification in vacuo using lipases from Rhizomucor miehei, Candida antarctica, and Carica papaya. J Agric Food Chem 49:5210–5216CrossRef PubMed
    Weber N, Weitkamp P, Mukherjee KD (2002) Cholesterol-lowering food additives: lipase-catalysed preparation of phytosterol and phytostanol esters. Food Res Int 35:177–181CrossRef
    Xiang HY, Takaya N, Hoshino T (2006) Novel cholesterol esterase secreted by Streptomyces persists during aqueous long-term storage. J Biosci Bioeng 101:19–25CrossRef PubMed
    Xiang H, Masuo S, Hoshino T, Takaya N (2007) Novel family of cholesterol esterases produced by actinomycetes bacteria. BBA-Proteins Proteom 1774:112–120CrossRef
    Yoon MY, Kellis J, Poulose AJ (2002) Enzymatic modification of polyester. AATCC Rev 2:33–36
    Zorn H, Bouws H, Takenberg M, Nimtz M, Getzlaff R, Breithaupt DE, Berger RG (2005) An extracellular carboxylesterase from the basidiomycete Pleurotus sapidus hydrolyses xanthophyll esters. Biol Chem 386:435–440CrossRef PubMed
  • 作者单位:Maria Eugenia Vaquero (1)
    Jorge Barriuso (1)
    María Jesús Martínez (1)
    Alicia Prieto (1)

    1. Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Biotechnology
    Microbiology
    Microbial Genetics and Genomics
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-0614
文摘
According to their substrate preferences, carboxylic ester hydrolases are organized in smaller clusters. Among them, sterol esterases (EC 3.1.1.13), also known as cholesterol esterases, act on fatty acid esters of cholesterol and other sterols in aqueous media, and are also able to catalyze synthesis by esterification or transesterification in the presence of organic solvents. Mammalian cholesterol esterases are intracellular enzymes that have been extensively studied since they are essential in lipid metabolism and cholesterol absorption, and the natural role of some microbial sterol esterases is supposed to be similar. However, besides these intracellular enzymes, a number of microbes produce extracellular sterol esterases, which show broad stability, selectivity, or wide substrate specificity, making them interesting for the industry. In spite of this, there is little information about microbial sterol esterases, and only a small amount of them have been characterized. Some of the most commercially exploited cholesterol esterases are produced by Pseudomonas species and by Candida rugosa, although in the last case they are usually described and named as “high substrate versatility lipases.” From a structural point of view, most of them belong to the α/β-hydrolase superfamily and have a conserved “catalytic triad” formed by His, an acidic amino acid and a Ser residue that is located in a highly conserved GXSXG sequence. In this review, the information available on microbial sterol esterases has been gathered, taking into account their origin, production and purification, heterologous expression, structure, stability, or substrate specificity, which are the main properties that make them attractive for different applications. Moreover, a comprehensive phylogenetic analysis on available sequences of cholesterol esterases has been done, including putative sequences deduced from public genomes.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700