Modeling leukocyte trafficking at the human blood-nerve barrier in vitro and in vivo geared towards targeted molecular therapies for peripheral neuroinflammation
详细信息    查看全文
  • 作者:Kelsey M. Greathouse ; Steven P. Palladino ; Chaoling Dong…
  • 关键词:Blood ; nerve barrier ; Chronic inflammatory demyelinating polyradiculoneuropathy ; Experimental autoimmune neuritis ; Guillain ; Barré syndrome ; Intravital microscopy ; Leukocyte trafficking ; Neuropathic pain ; Spontaneous autoimmune peripheral polyneuropathy ; Two ; photon microscopy
  • 刊名:Journal of Neuroinflammation
  • 出版年:2016
  • 出版时间:December 2016
  • 年:2016
  • 卷:13
  • 期:1
  • 全文大小:2,369 KB
  • 参考文献:1.Bennett GJ. Neuropathic pain: new insights, new interventions. Hosp Pract (1995). 1998;33(10):95–8. 101-4, 7-10 passim.CrossRef
    2.Dworkin RH. An overview of neuropathic pain: syndromes, symptoms, signs, and several mechanisms. Clin J Pain. 2002;18(6):343–9.CrossRef PubMed
    3.Bennett GJ, Xie YK. A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man. Pain. 1988;33(1):87–107.CrossRef PubMed
    4.McCarberg BH, Billington R. Consequences of neuropathic pain: quality-of-life issues and associated costs. Am J Manag Care. 2006;12(9 Suppl):S263–8.PubMed
    5.Kanda T. Biology of the blood-nerve barrier and its alteration in immune mediated neuropathies. J Neurol Neurosurg Psychiatry. 2013;84(2):208–12. doi:10.​1136/​jnnp-2012-302312 .CrossRef PubMed
    6.Ubogu EE. The molecular and biophysical characterization of the human blood-nerve barrier: current concepts. J Vasc Res. 2013;50(4):289–303. doi:10.​1159/​000353293 .CrossRef PubMed PubMedCentral
    7.Mizisin AP, Weerasuriya A. Homeostatic regulation of the endoneurial microenvironment during development, aging and in response to trauma, disease and toxic insult. Acta Neuropathol. 2011;121(3):291–312. doi:10.​1007/​s00401-010-0783-x .CrossRef PubMed PubMedCentral
    8.Giannini C, Dyck PJ. Ultrastructural morphometric abnormalities of sural nerve endoneurial microvessels in diabetes mellitus. Ann Neurol. 1994;36(3):408–15. doi:10.​1002/​ana.​410360312 .CrossRef PubMed
    9.Kieseier BC, Kiefer R, Gold R, Hemmer B, Willison HJ, Hartung HP. Advances in understanding and treatment of immune-mediated disorders of the peripheral nervous system. Muscle Nerve. 2004;30(2):131–56. doi:10.​1002/​mus.​20076 .CrossRef PubMed
    10.Malik RA, Newrick PG, Sharma AK, Jennings A, Ah-See AK, Mayhew TM, et al. Microangiopathy in human diabetic neuropathy: relationship between capillary abnormalities and the severity of neuropathy. Diabetologia. 1989;32(2):92–102.CrossRef PubMed
    11.Malik RA, Veves A, Masson EA, Sharma AK, Ah-See AK, Schady W, et al. Endoneurial capillary abnormalities in mild human diabetic neuropathy. J Neurol Neurosurg Psychiatry. 1992;55(7):557–61.CrossRef PubMed PubMedCentral
    12.Meyer zu Horste G, Hartung HP, Kieseier BC. From bench to bedside—experimental rationale for immune-specific therapies in the inflamed peripheral nerve. Nat Clin Pract Neurol. 2007;3(4):198–211. doi:10.​1038/​ncpneuro0452 .CrossRef PubMed
    13.Bouchard C, Lacroix C, Plante V, Adams D, Chedru F, Guglielmi JM, et al. Clinicopathologic findings and prognosis of chronic inflammatory demyelinating polyneuropathy. Neurology. 1999;52(3):498–503.CrossRef PubMed
    14.Hartung HP, Willison HJ, Kieseier BC. Acute immunoinflammatory neuropathy: update on Guillain-Barre syndrome. Curr Opin Neurol. 2002;15(5):571–7.CrossRef PubMed
    15.Rizzuto N, Morbin M, Cavallaro T, Ferrari S, Fallahi M, Galiazzo RS. Focal lesions area feature of chronic inflammatory demyelinating polyneuropathy (CIDP). Acta Neuropathol. 1998;96(6):603–9.CrossRef PubMed
    16.Old EA, Nadkarni S, Grist J, Gentry C, Bevan S, Kim KW, et al. Monocytes expressing CX3CR1 orchestrate the development of vincristine-induced pain. J Clin Invest. 2014;124(5):2023–36. doi:10.​1172/​JCI71389 .CrossRef PubMed PubMedCentral
    17.Padi SS, Shi XQ, Zhao YQ, Ruff MR, Baichoo N, Pert CB, et al. Attenuation of rodent neuropathic pain by an orally active peptide, RAP-103, which potently blocks CCR2- and CCR5-mediated monocyte chemotaxis and inflammation. Pain. 2012;153(1):95–106. doi:10.​1016/​j.​pain.​2011.​09.​022 .CrossRef PubMed
    18.Liou JT, Lee CM, Lin YC, Chen CY, Liao CC, Lee HC, et al. P-selectin is required for neutrophils and macrophage infiltration into injured site and contributes to generation of behavioral hypersensitivity following peripheral nerve injury in mice. Pain. 2013;154(10):2150–9. doi:10.​1016/​j.​pain.​2013.​06.​042 .CrossRef PubMed
    19.Decosterd I, Woolf CJ. Spared nerve injury: an animal model of persistent peripheral neuropathic pain. Pain. 2000;87(2):149–58.CrossRef PubMed
    20.Perkins N, Tracey D. Hyperalgesia due to nerve injury: role of neutrophils. Neuroscience. 2000;101(3):745–57. doi:S0306-4522(00)00396-1 [pii].CrossRef PubMed
    21.Abbadie C, Lindia JA, Cumiskey AM, Peterson LB, Mudgett JS, Bayne EK, et al. Impaired neuropathic pain responses in mice lacking the chemokine receptor CCR2. Proc Natl Acad Sci U S A. 2003;100(13):7947–52. doi:10.​1073/​pnas.​1331358100 .CrossRef PubMed PubMedCentral
    22.Tanaka T, Minami M, Nakagawa T, Satoh M. Enhanced production of monocyte chemoattractant protein-1 in the dorsal root ganglia in a rat model of neuropathic pain: possible involvement in the development of neuropathic pain. Neurosci Res. 2004;48(4):463–9. doi:10.​1016/​j.​neures.​2004.​01.​004 .CrossRef PubMed
    23.Van Steenwinckel J, Auvynet C, Sapienza A, Reaux-Le Goazigo A, Combadiere C, Melik PS. Stromal cell-derived CCL2 drives neuropathic pain states through myeloid cell infiltration in injured nerve. Brain Behav Immun. 2015;45:198–210. doi:10.​1016/​j.​bbi.​2014.​10.​016 .CrossRef PubMed
    24.Kleinschnitz C, Hofstetter HH, Meuth SG, Braeuninger S, Sommer C, Stoll G. T cell infiltration after chronic constriction injury of mouse sciatic nerve is associated with interleukin-17 expression. Exp Neurol. 2006;200(2):480–5. doi:10.​1016/​j.​expneurol.​2006.​03.​014 .CrossRef PubMed
    25.Kim CF, Moalem-Taylor G. Interleukin-17 contributes to neuroinflammation and neuropathic pain following peripheral nerve injury in mice. J Pain. 2011;12(3):370–83. doi:10.​1016/​j.​jpain.​2010.​08.​003 .CrossRef PubMed
    26.Austin PJ, Kim CF, Perera CJ, Moalem-Taylor G. Regulatory T cells attenuate neuropathic pain following peripheral nerve injury and experimental autoimmune neuritis. Pain. 2012;153(9):1916–31. doi:10.​1016/​j.​pain.​2012.​06.​005 .CrossRef PubMed
    27.Olsson Y. Microenvironment of the peripheral nervous system under normal and pathological conditions. Crit Rev Neurobiol. 1990;5(3):265–311.PubMed
    28.Reina MA, Lopez A, Villanueva MC, de Andres JA, Leon GI. Morphology of peripheral nerves, their sheaths, and their vascularization. Rev Esp Anestesiol Reanim. 2000;47(10):464–75.PubMed
    29.Reina MA, Lopez A, Villanueva MC, De Andres JA, Maches F. The blood-nerve barrier in peripheral nerves. Rev Esp Anestesiol Reanim. 2003;50(2):80–6.PubMed
    30.Olsson Y. Studies on vascular permeability in peripheral nerves. I. Distribution of circulating fluorescent serum albumin in normal, crushed and sectioned rat sciatic nerve. Acta Neuropathol. 1966;7(1):1–15.CrossRef PubMed
    31.Olsson Y. Topographical differences in the vascular permeability of the peripheral nervous system. Acta Neuropathol. 1968;10(1):26–33.CrossRef PubMed
    32.Yosef N, Xia R, Ubogu E. Development and characterization of a novel human in vitro blood-nerve barrier model using primary endoneurial endothelial cells. J Neuropathol Exp Neurol. 2010;69(1):82–97.CrossRef PubMed
    33.Yuan F, Yosef N, Lakshmana Reddy C, Huang A, Chiang SC, Tithi HR, et al. CCR2 gene deletion and pharmacologic blockade ameliorate a severe murine experimental autoimmune neuritis model of Guillain-Barre syndrome. PLoS One. 2014;9(3):e90463. doi:10.​1371/​journal.​pone.​0090463 .CrossRef PubMed PubMedCentral
    34.Hultstrom D, Malmgren L, Gilstring D, Olsson Y. FITC-Dextrans as tracers for macromolecular movements in the nervous system. A freeze-drying method for dextrans of various molecular sizes injected into normal animals. Acta Neuropathol. 1983;59(1):53–62.CrossRef PubMed
    35.Olsson Y. Studies on vascular permeability in peripheral nerves. IV. Distribution of intravenously injected protein tracers in the peripheral nervous system of various species. Acta Neuropathol. 1971;17(2):114–26.CrossRef PubMed
    36.Yosef N, Ubogu EE. An immortalized human blood-nerve barrier endothelial cell line for in vitro permeability studies. Cell Mol Neurobiol. 2013;33(2):175–86. doi:10.​1007/​s10571-012-9882-7 .CrossRef PubMed PubMedCentral
    37.Yosef N, Ubogu EE. GDNF restores human blood-nerve barrier function via RET tyrosine kinase-mediated cytoskeletal reorganization. Microvasc Res. 2012;83(3):298–310. doi:10.​1016/​j.​mvr.​2012.​01.​005 .CrossRef PubMed
    38.Reddy CL, Yosef N, Ubogu EE. VEGF-A165 potently induces human blood-nerve barrier endothelial cell proliferation, angiogenesis, and wound healing in vitro. Cell Mol Neurobiol. 2013;33(6):789–801. doi:10.​1007/​s10571-013-9946-3 .CrossRef PubMed PubMedCentral
    39.Ley K, Laudanna C, Cybulsky MI, Nourshargh S. Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat Rev Immunol. 2007;7(9):678–89. doi:10.​1038/​nri2156 .CrossRef PubMed
    40.Yosef N, Ubogu EE. alpha(M)beta(2)-integrin-intercellular adhesion molecule-1 interactions drive the flow-dependent trafficking of Guillain-Barre syndrome patient derived mononuclear leukocytes at the blood-nerve barrier in vitro. J Cell Physiol. 2012;227(12):3857–75. doi:10.​1002/​jcp.​24100 .CrossRef PubMed PubMedCentral
    41.Campbell JJ, Hedrick J, Zlotnik A, Siani MA, Thompson DA, Butcher EC. Chemokines and the arrest of lymphocytes rolling under flow conditions. Science. 1998;279(5349):381–4.CrossRef PubMed
    42.Schreiber TH, Shinder V, Cain DW, Alon R, Sackstein R. Shear flow-dependent integration of apical and subendothelial chemokines in T-cell transmigration: implications for locomotion and the multistep paradigm. Blood. 2007;109(4):1381–6. doi:10.​1182/​blood-2006-07-032995 .CrossRef PubMed PubMedCentral
    43.Santaguida S, Janigro D, Hossain M, Oby E, Rapp E, Cucullo L. Side by side comparison between dynamic versus static models of blood
    ain barrier in vitro: a permeability study. Brain Res. 2006;1109(1):1–13. doi:10.​1016/​j.​brainres.​2006.​06.​027 .CrossRef PubMed
    44.Cucullo L, Marchi N, Hossain M, Janigro D. A dynamic in vitro BBB model for the study of immune cell trafficking into the central nervous system. J Cereb Blood Flow Metab. 2011;31(2):767–77. doi:10.​1038/​jcbfm.​2010.​162 .CrossRef PubMed PubMedCentral
    45.Bianchi E, Molteni R, Pardi R, Dubini G. Microfluidics for in vitro biomimetic shear stress-dependent leukocyte adhesion assays. J Biomech. 2013;46(2):276–83. doi:10.​1016/​j.​jbiomech.​2012.​10.​024 .CrossRef PubMed
    46.Kjellstrom BT, Ortenwall P, Risberg B. Comparison of oxidative metabolism in vitro in endothelial cells from different species and vessels. J Cell Physiol. 1987;132(3):578–80. doi:10.​1002/​jcp.​1041320323 .CrossRef PubMed
    47.Bell M, Weddell A. A descriptive study of the blood vessels of the sciatic nerve in the rat, man and other mammals. Brain. 1984;107(Pt 3):871–98.CrossRef PubMed
    48.Aird W. Phenotypic heterogeneity of the endothelium: I. Structure, function, and mechanisms. Circ Res. 2007;100(2):158–73.CrossRef PubMed
    49.Aird W. Phenotypic heterogeneity of the endothelium: II. Representative vascular beds. Circ Res. 2007;100(2):174–90.CrossRef PubMed
    50.Yano K, Gale D, Massberg S, Cheruvu P, Monahan-Earley R, Morgan E, et al. Phenotypic heterogeneity is an evolutionarily conserved feature of the endothelium. Blood. 2007;109(2):613–5.CrossRef PubMed
    51.Allt G, Lawrenson J. The blood-nerve barrier: enzymes, transporters and receptors—a comparison with the blood
    ain barrier. Brain Res Bull. 2000;52(1):1–12.CrossRef PubMed
    52.Orte C, Lawrenson J, Finn T, Reid A, Allt G. A comparison of blood
    ain barrier and blood-nerve barrier endothelial cell markers. Anat Embryol (Berl). 1999;199(6):509–17.CrossRef
    53.Ubogu EE. Inflammatory neuropathies: pathology, molecular markers and targets for specific therapeutic intervention. Acta Neuropathol. 2015;130(4):445–68. doi:10.​1007/​s00401-015-1466-4 .CrossRef PubMed
    54.Alon R, Ley K. Cells on the run: shear-regulated integrin activation in leukocyte rolling and arrest on endothelial cells. Curr Opin Cell Biol. 2008;20(5):525–32. doi:10.​1016/​j.​ceb.​2008.​04.​003 .CrossRef PubMed
    55.Gopalan PK, Jones DA, McIntire LV, Smith CW. Cell adhesion under hydrodynamic flow conditions. Curr Protoc Immunol. 2001;Chapter 7:Unit 7 29. doi:10.​1002/​0471142735.​im0729s15 .PubMed
    56.Man S, Tucky B, Bagheri N, Li X, Kochar R, Ransohoff RM. alpha4 Integrin/FN-CS1 mediated leukocyte adhesion to brain microvascular endothelial cells under flow conditions. J Neuroimmunol. 2009;210(1-2):92–9. doi:10.​1016/​j.​jneuroim.​2009.​03.​008 .CrossRef PubMed PubMedCentral
    57.Shulman Z, Alon R. Chapter 14. Real-time in vitro assays for studying the role of chemokines in lymphocyte transendothelial migration under physiologic flow conditions. Methods Enzymol. 2009;461:311–32. doi:10.​1016/​S0076-6879(09)05414-7 .CrossRef PubMed
    58.Ubogu EE. Chemokine-dependent signaling pathways in the peripheral nervous system. Methods Mol Biol. 2013;1013:17–30. doi:10.​1007/​978-1-62703-426-5_​2 .CrossRef PubMed
    59.Ubogu EE. Chemokine receptors as specific anti-inflammatory targets in peripheral nerves. Endocr Metab Immune Disord Drug Targets. 2011;11(2):141–53.CrossRef PubMed
    60.Kiefer R, Kieseier BC, Stoll G, Hartung HP. The role of macrophages in immune-mediated damage to the peripheral nervous system. Prog Neurobiol. 2001;64(2):109–27.CrossRef PubMed
    61.Xia RH, Yosef N, Ubogu EE. Selective expression and cellular localization of pro-inflammatory chemokine ligand/receptor pairs in the sciatic nerves of a severe murine experimental autoimmune neuritis model of Guillain-Barre syndrome. Neuropathol Appl Neurobiol. 2010;36(5):388–98. doi:10.​1111/​j.​1365-2990.​2010.​01092.​x .CrossRef PubMed
    62.Langert KA, Von Zee CL, Stubbs Jr EB. Cdc42 GTPases facilitate TNF-alpha-mediated secretion of CCL2 from peripheral nerve microvascular endoneurial endothelial cells. J Peripher Nerv Syst. 2013;18(3):199–208. doi:10.​1111/​jns5.​12032 .CrossRef PubMed PubMedCentral
    63.Langert KA, Von Zee CL, Stubbs Jr EB. Tumour necrosis factor alpha enhances CCL2 and ICAM-1 expression in peripheral nerve microvascular endoneurial endothelial cells. ASN Neuro. 2013;5(1):e00104. doi:10.​1042/​AN20120048 .CrossRef PubMed PubMedCentral
    64.Atherton A, Born GV. Quantitative investigations of the adhesiveness of circulating polymorphonuclear leucocytes to blood vessel walls. J Physiol. 1972;222(2):447–74.CrossRef PubMed PubMedCentral
    65.Masedunskas A, Milberg O, Porat-Shliom N, Sramkova M, Wigand T, Amornphimoltham P, et al. Intravital microscopy: a practical guide on imaging intracellular structures in live animals. Bioarchitecture. 2012;2(5):143–57. doi:10.​4161/​bioa.​21758 .CrossRef PubMed PubMedCentral
    66.Weigert R, Porat-Shliom N, Amornphimoltham P. Imaging cell biology in live animals: ready for prime time. J Cell Biol. 2013;201(7):969–79. doi:10.​1083/​jcb.​201212130 .CrossRef PubMed PubMedCentral
    67.Gavins FN. Intravital microscopy: new insights into cellular interactions. Curr Opin Pharmacol. 2012;12(5):601–7. doi:10.​1016/​j.​coph.​2012.​08.​006 .CrossRef PubMed
    68.Mempel TR, Scimone ML, Mora JR, von Andrian UH. In vivo imaging of leukocyte trafficking in blood vessels and tissues. Curr Opin Immunol. 2004;16(4):406–17. doi:10.​1016/​j.​coi.​2004.​05.​018 .CrossRef PubMed
    69.Pai S, Danne KJ, Qin J, Cavanagh LL, Smith A, Hickey MJ, et al. Visualizing leukocyte trafficking in the living brain with 2-photon intravital microscopy. Front Cell Neurosci. 2012;6:67. doi:10.​3389/​fncel.​2012.​00067 .PubMed PubMedCentral
    70.Niesner R, Andresen V, Neumann J, Spiecker H, Gunzer M. The power of single and multibeam two-photon microscopy for high-resolution and high-speed deep tissue and intravital imaging. Biophys J. 2007;93(7):2519–29. doi:10.​1529/​biophysj.​106.​102459 .CrossRef PubMed PubMedCentral
    71.Ricard C, Debarbieux FC. Six-color intravital two-photon imaging of brain tumors and their dynamic microenvironment. Front Cell Neurosci. 2014;8:57. doi:10.​3389/​fncel.​2014.​00057 .CrossRef PubMed PubMedCentral
    72.Reichenbach ZW, Li H, Gaughan JP, Elliott M, Tuma R. IV and IP administration of rhodamine in visualization of WBC-BBB interactions in cerebral vessels. Microsc Res Tech. 2015;78(10):894–9. doi:10.​1002/​jemt.​22552 .CrossRef PubMed
    73.Denk W, Strickler JH, Webb WW. Two-photon laser scanning fluorescence microscopy. Science. 1990;248(4951):73–6.CrossRef PubMed
    74.Zoumi A, Yeh A, Tromberg BJ. Imaging cells and extracellular matrix in vivo by using second-harmonic generation and two-photon excited fluorescence. Proc Natl Acad Sci U S A. 2002;99(17):11014–9. doi:10.​1073/​pnas.​172368799 .CrossRef PubMed PubMedCentral
    75.Herz J, Paterka M, Niesner RA, Brandt AU, Siffrin V, Leuenberger T, et al. In vivo imaging of lymphocytes in the CNS reveals different behaviour of naive T cells in health and autoimmunity. J Neuroinflammation. 2011;8:131. doi:10.​1186/​1742-2094-8-131 .CrossRef PubMed PubMedCentral
    76.Cahalan MD, Parker I, Wei SH, Miller MJ. Two-photon tissue imaging: seeing the immune system in a fresh light. Nat Rev Immunol. 2002;2(11):872–80. doi:10.​1038/​nri935 .CrossRef PubMed PubMedCentral
    77.von Andrian UH, Mempel TR. Homing and cellular traffic in lymph nodes. Nat Rev Immunol. 2003;3(11):867–78. doi:10.​1038/​nri1222 .CrossRef
    78.Von Andrian UH, Hansell P, Chambers JD, Berger EM, Torres Filho I, Butcher EC, et al. L-selectin function is required for beta 2-integrin-mediated neutrophil adhesion at physiological shear rates in vivo. Am J Physiol. 1992;263(4 Pt 2):H1034–44.
    79.Piccio L, Rossi B, Scarpini E, Laudanna C, Giagulli C, Issekutz AC, et al. Molecular mechanisms involved in lymphocyte recruitment in inflamed brain microvessels: critical roles for P-selectin glycoprotein ligand-1 and heterotrimeric G(i)-linked receptors. J Immunol. 2002;168(4):1940–9.CrossRef PubMed
    80.Handel TM, Johnson Z, Rodrigues DH, Dos Santos AC, Cirillo R, Muzio V, et al. An engineered monomer of CCL2 has anti-inflammatory properties emphasizing the importance of oligomerization for chemokine activity in vivo. J Leukoc Biol. 2008;84(4):1101–8. doi:10.​1189/​jlb.​0108061 .CrossRef PubMed PubMedCentral
    81.Coisne C, Mao W, Engelhardt B. Cutting edge: natalizumab blocks adhesion but not initial contact of human T cells to the blood
    ain barrier in vivo in an animal model of multiple sclerosis. J Immunol. 2009;182(10):5909–13. doi:10.​4049/​jimmunol.​0803418 .CrossRef PubMed
    82.Jain P, Coisne C, Enzmann G, Rottapel R, Engelhardt B. Alpha4beta1 integrin mediates the recruitment of immature dendritic cells across the blood
    ain barrier during experimental autoimmune encephalomyelitis. J Immunol. 2010;184(12):7196–206. doi:10.​4049/​jimmunol.​0901404 .CrossRef PubMed PubMedCentral
    83.Sathiyanadan K, Coisne C, Enzmann G, Deutsch U, Engelhardt B. PSGL-1 and E/P-selectins are essential for T-cell rolling in inflamed CNS microvessels but dispensable for initiation of EAE. Eur J Immunol. 2014;44(8):2287–94. doi:10.​1002/​eji.​201344214 .CrossRef PubMed
    84.Zhou H, Lapointe BM, Clark SR, Zbytnuik L, Kubes P. A requirement for microglial TLR4 in leukocyte recruitment into brain in response to lipopolysaccharide. J Immunol. 2006;177(11):8103–10.CrossRef PubMed
    85.Ramirez SH, Hasko J, Skuba A, Fan S, Dykstra H, McCormick R, et al. Activation of cannabinoid receptor 2 attenuates leukocyte-endothelial cell interactions and blood
    ain barrier dysfunction under inflammatory conditions. J Neurosci. 2012;32(12):4004–16. doi:10.​1523/​JNEUROSCI.​4628-11.​2012 .CrossRef PubMed PubMedCentral
    86.Wu F, Zhao Y, Jiao T, Shi D, Zhu X, Zhang M, et al. CXCR2 is essential for cerebral endothelial activation and leukocyte recruitment during neuroinflammation. J Neuroinflammation. 2015;12:98. doi:10.​1186/​s12974-015-0316-6 .CrossRef PubMed PubMedCentral
    87.Teixeira MM, Vilela MC, Soriani FM, Rodrigues DH, Teixeira AL. Using intravital microscopy to study the role of chemokines during infection and inflammation in the central nervous system. J Neuroimmunol. 2010;224(1-2):62–5. doi:10.​1016/​j.​jneuroim.​2010.​05.​018 .CrossRef PubMed
    88.Zhang M, Sun D, Liu G, Wu H, Zhou H, Shi M. Real-time in vivo imaging reveals the ability of neutrophils to remove Cryptococcus neoformans directly from the brain vasculature. J Leukoc Biol. 2015. doi:10.​1189/​jlb.​4AB0715-281R .PubMedCentral
    89.Schwarzmaier SM, Zimmermann R, McGarry NB, Trabold R, Kim SW, Plesnila N. In vivo temporal and spatial profile of leukocyte adhesion and migration after experimental traumatic brain injury in mice. J Neuroinflammation. 2013;10:32. doi:10.​1186/​1742-2094-10-32 .CrossRef PubMed PubMedCentral
    90.Zenaro E, Rossi B, Angiari S, Constantin G. Use of imaging to study leukocyte trafficking in the central nervous system. Immunol Cell Biol. 2013;91(4):271–80. doi:10.​1038/​icb.​2012.​81 .CrossRef PubMed
  • 作者单位:Kelsey M. Greathouse (1)
    Steven P. Palladino (1)
    Chaoling Dong (1)
    Eric S. Helton (1)
    Eroboghene E. Ubogu (1)

    1. Department of Neurology, Neuromuscular Immunopathology Research Laboratory, Division of Neuromuscular Disease, The University of Alabama at Birmingham, 1825 University Boulevard, Room 1131, Birmingham, AL, 35294-0017, USA
  • 刊物主题:Neurosciences; Neurology; Neurobiology; Immunology;
  • 出版者:BioMed Central
  • ISSN:1742-2094
文摘
Peripheral neuroinflammation is characterized by hematogenous mononuclear leukocyte infiltration into peripheral nerves. Despite significant clinical knowledge, advancements in molecular biology and progress in developing specific drugs for inflammatory disorders such as rheumatoid arthritis, inflammatory bowel disease, and multiple sclerosis, there are currently no specific therapies that modulate pathogenic peripheral nerve inflammation. Modeling leukocyte trafficking at the blood-nerve barrier using a reliable human in vitro model and potential intravital microscopy techniques in representative animal models guided by human observational data should facilitate the targeted modulation of the complex inflammatory cascade needed to develop safe and efficacious therapeutics for immune-mediated neuropathies and chronic neuropathic pain. Keywords Blood-nerve barrier Chronic inflammatory demyelinating polyradiculoneuropathy Experimental autoimmune neuritis Guillain-Barré syndrome Intravital microscopy Leukocyte trafficking Neuropathic pain Spontaneous autoimmune peripheral polyneuropathy Two-photon microscopy

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700