The mitogen-activated protein kinome from Anopheles gambiae: identification, phylogeny and functional characterization of the ERK, JNK and p38 MAP kinases
详细信息    查看全文
  • 作者:Ashley A Horton (1)
    Bo Wang (1)
    Lauren Camp (2)
    Mark S Price (1)
    Arora Arshi (3)
    Mate Nagy (3)
    Steven A Nadler (2)
    James R Faeder (3)
    Shirley Luckhart (1)
  • 刊名:BMC Genomics
  • 出版年:2011
  • 出版时间:December 2011
  • 年:2011
  • 卷:12
  • 期:1
  • 全文大小:724KB
  • 参考文献:1. Zhang W, Liu HT: MAPK signal pathways in the regulation of cell proliferation in mammalian cells. / Cell Res 2002, 12:9鈥?8. CrossRef
    2. Roux PP, Blenis J: ERK and p38 MAPK-activated protein kinases: a family of protein kinases with diverse biological functions. / Microbiol Mol Biol Rev 2004, 68:320鈥?44. CrossRef
    3. Huang G, Shi LZ, Chi H: Regulation of JNK and p38 MAPK in the immune system: signal integration, propagation and termination. / Cytokine 2009, 48:161鈥?69. CrossRef
    4. Chang L, Karin M: Mammalian MAP kinase signalling cascades. / Nature 2001, 410:37鈥?0. CrossRef
    5. Krishna M, Narang H: The complexity of mitogen-activated protein kinases (MAPKs) made simple. / Cell Mol Life Sci 2008, 65:3525鈥?544. CrossRef
    6. Haddad JJ: The role of inflammatory cytokines and NF-kappaB/MAPK signaling pathways in the evolution of familial Mediterranean fever: current clinical perspectives and potential therapeutic approaches. / Cell Immunol 2009, 260:6鈥?3. CrossRef
    7. Lee SH, Park Y, Yoon SK, Yoon JB: Osmotic stress inhibits proteasome by p38 MAPK-dependent phosphorylation. / J Biol Chem 2010, 285:41280鈥?1289. CrossRef
    8. Runchel C, Matsuzawa A, Ichijo H: Mitogen-activated protein kinases in mammalian oxidative stress responses. / Antioxid Redox Signal 2011, in press.
    9. Surachetpong W, Singh N, Cheung KW, Luckhart S: MAPK ERK signaling regulates the TGF-beta1-dependent mosquito response to Plasmodium falciparum . / PLoS Pathog 2009, 5:e1000366. CrossRef
    10. Cuadrado A, Nebreda AR: Mechanisms and functions of p38 MAPK signalling. / Biochem J 2010, 429:403鈥?17. CrossRef
    11. Sakaguchi A, Matsumoto K, Hisamoto N: Roles of MAP kinase cascades in Caenorhabditis elegans . / J Biochem 2004, 136:7鈥?1. CrossRef
    12. Ragab A, Buechling T, Gesellchen V, Spirohn K, Boettcher AL, Boutros M: Drosophila Ras/MAPK signalling regulates innate immune responses in immune and intestinal stem cells. / EMBO J 2011, 30:1123鈥?136. CrossRef
    13. Cargnello M, Roux PP: Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. / Microbiol Mol Biol Rev 2011, 75:50鈥?3. CrossRef
    14. Kultz D: Phylogenetic and functional classification of mitogen- and stress-activated protein kinases. / J Mol Evol 1998, 46:571鈥?88. CrossRef
    15. Caffrey DR, O'Neill LA, Shields DC: The evolution of the MAP kinase pathways: coduplication of interacting proteins leads to new signaling cascades. / J Mol Evol 1999, 49:567鈥?82. CrossRef
    16. Wang L, Yang Z, Li Y, Yu F, Brindley PJ, McManus DP, Wei D, Han Z, Feng Z, Li Y, Hu W: Reconstruction and in silico analysis of the MAPK signaling pathways in the human blood fluke, Schistosoma japonicum . / FEBS Lett 2006, 580:3677鈥?686. CrossRef
    17. Hay SI, Guerra CA, Gething PW, Patil AP, Tatem AJ, Noor AM, Kabaria CW, Manh BH, Elyazar IR, Brooker S, Smith DL, Moyeed RA, Snow RW: A world malaria map: Plasmodium falciparum endemicity in 2007. / PLoS Med 2009, 6:e1000048.
    18. Zhu J, Krishnegowda G, Gowda DC: Induction of proinflammatory responses in macrophages by the glycosylphosphatidylinositols of Plasmodium falciparum : the requirement of extracellular signal-regulated kinase, p38, c-Jun N-terminal kinase and NF-kappaB pathways for the expression of proinflammatory cytokines and nitric oxide. / J Biol Chem 2005,280(9):8617鈥?627. CrossRef
    19. Lu Z, Serghides L, Patel SN, Degousee N, Rubin BB, Krishnegowda G, Gowda DC, Karin M, Kain KC: Disruption of JNK2 decreases the cytokine response to Plasmodium falciparum glycosylphosphatidylinositol in vitro and confers protection in a cerebral malaria model. / J Immunol 2006, 177:6344鈥?352.
    20. Surachetpong W, Pakpour N, Cheung KW, Luckhart S: Reactive oxygen species-dependent cell signaling regulates the mosquito immune response to Plasmodium falciparum . / Antioxid Redox Signal 2011, 14:943鈥?55. CrossRef
    21. Jaramillo M, Gowda DC, Radzioch D, Olivier M: Hemozoin increases IFN-gamma-inducible macrophage nitric oxide generation through extracellular signal-regulated kinase- and NF-kappa B-dependent pathways. / J Immunol 2003, 171:4243鈥?253.
    22. Shio MT, Kassa FA, Bellemare MJ, Olivier M: Innate inflammatory response to the malarial pigment hemozoin. / Microbes Infect 2010, 12:889鈥?99. CrossRef
    23. Arrighi RB, Debierre-Grockiego F, Schwarz RT, Faye I: The immunogenic properties of protozoan glycosylphosphatidylinositols in the mosquito Anopheles gambiae . / Dev Comp Immunol 2009, 33:216鈥?23. CrossRef
    24. Lim J, Gowda DC, Krishnegowda G, Luckhart S: Induction of nitric oxide synthase in Anopheles stephensi by Plasmodium falciparum : mechanism of signaling and the role of parasite glycosylphosphatidylinositols. / Infect Immun 2005, 73:2778鈥?789. CrossRef
    25. Akman-Anderson L, Olivier M, Luckhart S: Induction of nitric oxide synthase and activation of signaling proteins in Anopheles mosquitoes by the malaria pigment, hemozoin. / Infect Immun 2007, 75:4012鈥?019. CrossRef
    26. Luckhart S, Vodovotz Y, Cui L, Rosenberg R: The mosquito Anopheles stephensi limits malaria parasite development with inducible synthesis of nitric oxide. / Proc Natl Acad Sci USA 1998, 95:5700鈥?705. CrossRef
    27. Peterson TM, Gow AJ, Luckhart S: Nitric oxide metabolites induced in Anopheles stephensi control malaria parasite infection. / Free Radic Biol Med 2007, 42:132鈥?42. CrossRef
    28. Ramiro RS, Alpedrinha J, Carter L, Gardner A, Reece SE: Sex and death: the effects of innate immune factors on the sexual reproduction of malaria parasites. / PLoS Pathog 2011, 7:e1001309. CrossRef
    29. Jaramillo-Gutierrez G, Molina-Cruz A, Kumar S, Barillas-Mury C: The Anopheles gambiae oxidation resistance 1 (OXR1) gene regulates expression of enzymes that detoxify reactive oxygen species. / PLoS One 2010, 5:e11168. CrossRef
    30. Chen-Chih Wu R, Shaio MF, Cho WL: A p38 MAP kinase regulates the expression of the Aedes aegypti defensin gene in mosquito cells. / Insect Mol Biol 2007, 16:389鈥?99. CrossRef
    31. Cancino-Rodezno A, Alexander C, Villase帽or R, Pacheco S, Porta H, Pauchet Y, Sober贸n M, Gill SS, Bravo A: The mitogen-activated protein kinase p38 is involved in insect defense against Cry toxins from Bacillus thuringiensis . / Insect Biochem Mol Biol 2010, 40:58鈥?3. CrossRef
    32. Moon AE, Walker AJ, Goodbourn S: Regulation of transcription of the Aedes albopictus cecropin A1 gene: a role for p38 mitogen-activated protein kinase. / Insect Biochem Mol Biol 2011, in press.
    33. Holt RA, Subramanian GM, Halpern A, Sutton GG, Charlab R, Nusskern DR, Wincker P, Clark AG, Ribeiro JM, Wides R, Salzberg SL, Loftus B, Yandell M, Majoros WH, Rusch DB, Lai Z, Kraft CL, Abril JF, Anthouard V, Arensburger P, Atkinson PW, Baden H, de Berardinis V, Baldwin D, Benes V, Biedler J, Blass C, Bolanos R, Boscus D, Barnstead M, / et al.: The genome sequence of the malaria mosquito Anopheles gambiae . / Science 2002, 298:129鈥?49. CrossRef
    34. GeneCards database [http://www.genecards.org]
    35. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment search tool. / J Mol Biol 1990, 215:403鈥?10.
    36. Cobb MH, Goldsmith EJ: How MAP kinases are regulated. / J Biol Chem 1995, 270:14843鈥?4846. CrossRef
    37. Zhang J, Zhang F, Ebert D, Cobb MH, Goldsmith EJ: Activity of the MAP kinase ERK2 is controlled by a flexible surface loop. / Structure 1995, 3:299鈥?07. CrossRef
    38. Chenna R, Sugawara H, Koike T, Lopez R, Gibson TJ, Higgins DG, Thompson JD: Multiple sequence alignment with the Clustal series of programs. / Nucleic Acids Res 2003, 31:3497鈥?500. CrossRef
    39. Felsenstein J: Mathematics vs. evolution: mathematical evolutionary theory. / Science 1989, 246:941鈥?42. CrossRef
    40. M眉ller HM, Dimopoulos G, Blass C, Kafatos FC: A hemocyte-like cell line established from the malaria vector Anopheles gambiae expresses six prophenoloxidase genes. / J Biol Chem 1999, 274:11727鈥?1735. CrossRef
    41. Meredith JM, Munks RJ, Grail W, Hurd H, Eggleston P, Lehane MJ: A novel association between clustered NF-kappaB and C/EBP binding sites is required for immune regulation of mosquito defensin genes. / Insect Mol Biol 2006, 15:393鈥?01. CrossRef
    42. Lawson D, Arensburger P, Atkinson P, Besansky NJ, Bruggner RV, Butler R, Campbell KS, Christophides GK, Christley S, Dialynas E, Hammond M, Hill CA, Konopinski N, Lobo NF, MacCallum RM, Madey G, Megy K, Meyer J, Redmond S, Severson DW, Stinson EO, Topalis P, Birney E, Gelbart WM, Kafatos FC, Louis C, Collins FH: VectorBase: a data resource for invertebrate vector genomics. / Nucleic Acids Res 2009, (37 Database):D583-D587. VectorBase http://www.vectorbase.org / Anopheles gambiae PEST annotation, AgamP3.5
    43. Keshet Y, Seger R: The MAP kinase signaling cascades: a system of hundreds of components regulates a diverse array of physiological functions. / Methods Molec Biol 2010, 661:3鈥?8. CrossRef
    44. Champion A, Picaud A, Henry Y: Reassessing the MAP3K and MAP4K relationships. / Trends Plant Sci 2004, 9:123鈥?29. CrossRef
    45. Rao KP, Richa T, Kumar K, Raghuram B, Sinha AK: In silico analysis reveals 75 members of mitogen-activated protein kinase kinase kinase gene family in rice. / DNA Res 2010, 17:139鈥?53. CrossRef
    46. Mizutani T, Kobayashi M, Eshita Y, Shirato K, Kimura T, Ako Y, Miyoshi H, Takasaki T, Kurane I, Kariwa H, Umemura T, Takashima I: Involvement of the JNK-like protein of the Aedes albopictus mosquito cell line, C6/36, in phagocytosis, endocytosis and infection of West Nile virus. / Insect Mol Biol 2003, 12:491鈥?99. CrossRef
    47. Graves PR, Haystead TA: A functional proteomics approach to signal transduction. / Recent Prog Horm Res 2003, 58:1鈥?4. CrossRef
    48. KEGG (Kyoto Encyclopedia of Genes and Genomes), Kanehisa M, Goto S, Furumichi M, Tanabe M, Hirakawa M: KEGG for representation and analysis of molecular networks involving diseases and drugs. / Nucleic Acids Res 2010, 38:D355-D360. Pathway Database http://www.genome.jp/kegg/pathway.html Kanehisa M, Goto S, Hattori M, Aoki-Kinoshita KF, Itoh M, Kawashima S, Katayama T, Araki M, Hirakawa M: From genomics to chemical genomics: new developments in KEGG. / Nucleic Acids Res 2006, 34:D354-D357; Kanehisa M, Goto S: KEGG: Kyoto Encyclopedia of Genes and Genomes. / Nucleic Acids Res 2000, 28:27鈥?0. CrossRef
    49. Shivers RP, Youngman MJ, Kim DH: Transcriptional responses to pathogens in Caenorhabditis elegans . / Curr Opin Microbiol 2008, 11:251鈥?56. CrossRef
    50. Delaney JR, St枚ven S, Uvell H, Anderson KV, Engstr枚m Y, Mlodzik M: Cooperative control of Drosophila immune responses by the JNK and NF-kappaB signaling pathways. / EMBO J 2006, 25:3068鈥?077. CrossRef
    51. Chen J, Xie C, Tian L, Hong L, Wu X, Han J: Participation of the p38 pathway in Drosophila host defense against pathogenic bacteria and fungi. / Proc Natl Acad Sci USA 2010, 107:20774鈥?0779. CrossRef
    52. Park JM, Brady H, Ruocco MG, Sun H, Williams D, Lee SJ, Kato T Jr, Richards N, Chan K, Mercurio F, Karin M, Wasserman SA: Targeting of TAK1 by the NF-kappa B protein Relish regulates the JNK-mediated immune response in Drosophila . / Genes Dev 2004, 18:584鈥?94. CrossRef
    53. Brandt SM, Dionne MS, Khush RS, Pham LN, Vigdal TJ, Schneider DS: Secreted bacterial effectors and host-produced eiger/TNF drive death in a Salmonella -infected fruit fly. / PLoS Biol 2004, 2:e418. CrossRef
    54. Schneider DS, Ayres JS, Brandt SM, Costa A, Dionne MS, Gordon MD, Mabery EM, Moule MG, Pham LN, Shirasu-Hiza MM: Drosophila eiger mutants are sensitive to extracellular pathogens. / PLoS Pathog 2007, 3:e41. CrossRef
    55. Bidla G, Dushay MS, Theopold U: Crystal cell rupture after injury in Drosophila requires the JNK pathway, small GTPases and the TNF homolog Eiger. / J Cell Sci 2007, 120:1209鈥?215. CrossRef
    56. Giorgetti-Peraldi S, Peyrade F, Baron V, Van Obberghen E: Involvement of Janus kinases in the insulin signaling pathway. / Eur J Biochem 1995, 234:656鈥?60. CrossRef
    57. Maegawa H, Kashiwagi A, Fujita T, Ugi S, Hasegawa M, Obata T, Nishio Y, Kojima H, Hidaka H, Kikkawa R: SHPTP2 serves adapter protein linking between Janus kinase 2 and insulin receptor substrates. / Biochem Biophys Res Commun 1996, 228:122鈥?27. CrossRef
    58. Gual P, Baron V, Lequoy V, Van Obberghen E: Interaction of Janus kinases JAK-1 and JAK-2 with the insulin receptor and the insulin-like growth factor-1 receptor. / Endocrinology 1998, 139:884鈥?93. CrossRef
    59. Sandberg EM, Sayeski PP: Jak2 tyrosine kinase mediates oxidative stress-induced apoptosis in vascular smooth muscle cells. / J Biol Chem 2004, 279:34547鈥?4552. CrossRef
    60. Thirone AC, JeBailey L, Bilan PJ, Klip A: Opposite effect of JAK2 on insulin-dependent activation of mitogen-activated protein kinases and Akt in muscle cells: possible target to ameliorate insulin resistance. / Diabetes 2006, 55:942鈥?51. CrossRef
    61. Han YS, Thompson J, Kafatos FC, Barillas-Mury C: Molecular interactions between Anopheles stephensi midgut cells and Plasmodium berghei : the time bomb theory of ookinete invasion of mosquitoes. / EMBO J 2000, 19:6030鈥?040. CrossRef
    62. Shiao SH, Whitten MM, Zachary D, Hoffmann JA, Levashina EA: Fz2 and cdc42 mediate melanization and actin polymerization but are dispensable for Plasmodium killing in the mosquito midgut. / PLoS Pathog 2006, 2:e133. CrossRef
    63. Horton AA, Lee Y, Coulibaly CA, Rashbrook VK, Cornel AJ, Lanzaro GC, Luckhart S: Identification of three single nucleotide polymorphisms in Anopheles gambiae immune signaling genes that are associated with natural Plasmodium falciparum infection. / Malar J 2010, 9:160. CrossRef
    64. Riehle MM, Markianos K, Niar茅 O, Xu J, Li J, Tour茅 AM, Podiougou B, Oduol F, Diawara S, Diallo M, Coulibaly B, Ouatara A, Kruglyak L, Traor茅 SF, Vernick KD: Natural malaria infection in Anopheles gambiae is regulated by a single genomic control region. / Science 2006, 312:577鈥?79. CrossRef
    65. Vodovotz Y, Constantine G, Faeder J, Mi Q, Rubin J, Bartels J, Sarkar J, Squires RH Jr, Okonkwo DO, Gerlach J, Zamora R, Luckhart S, Ermentrout B, An G: Translational systems approaches to the biology of inflammation and healing. / Immunopharmacol Immunotoxicol 2010, 32:181鈥?95. CrossRef
  • 作者单位:Ashley A Horton (1)
    Bo Wang (1)
    Lauren Camp (2)
    Mark S Price (1)
    Arora Arshi (3)
    Mate Nagy (3)
    Steven A Nadler (2)
    James R Faeder (3)
    Shirley Luckhart (1)

    1. Department of Medical Microbiology and Immunology, School of Medicine, University of California, 3146 Tupper Hall, One Shields Avenue, Davis, 95616, USA
    2. Department of Nematology, College of Agricultural and Environmental Sciences, University of California, 354 Hutchison Hall, One Shields Avenue, Davis, 95616, USA
    3. Department of Computational Biology, University of Pittsburgh School of Medicine, 3082 Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, PA, 15260, USA
文摘
Background Anopheles gambiae is the primary mosquito vector of human malaria parasites in sub-Saharan Africa. To date, three innate immune signaling pathways, including the nuclear factor (NF)-kappaB-dependent Toll and immune deficient (IMD) pathways and the Janus kinase/signal transducers and activators of transcription (Jak-STAT) pathway, have been extensively characterized in An. gambiae. However, in addition to NF-kappaB-dependent signaling, three mitogen-activated protein kinase (MAPK) pathways regulated by JNK, ERK and p38 MAPK are critical mediators of innate immunity in other invertebrates and in mammals. Our understanding of the roles of the MAPK signaling cascades in anopheline innate immunity is limited, so identification of the encoded complement of these proteins, their upstream activators, and phosphorylation profiles in response to relevant immune signals was warranted. Results In this study, we present the orthologs and phylogeny of 17 An. gambiae MAPKs, two of which were previously unknown and two others that were incompletely annotated. We also provide detailed temporal activation profiles for ERK, JNK, and p38 MAPK in An. gambiae cells in vitro to immune signals that are relevant to malaria parasite infection (human insulin, human transforming growth factor-beta1, hydrogen peroxide) and to bacterial lipopolysaccharide. These activation profiles and possible upstream regulatory pathways are interpreted in light of known MAPK signaling cascades. Conclusions The establishment of a MAPK "road map" based on the most advanced mosquito genome annotation can accelerate our understanding of host-pathogen interactions and broader physiology of An. gambiae and other mosquito species. Further, future efforts to develop predictive models of anopheline cell signaling responses, based on iterative construction and refinement of data-based and literature-based knowledge of the MAP kinase cascades and other networked pathways will facilitate identification of the "master signaling regulators" in biomedically important mosquito species.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700