Monophyly of clade III nematodes is not supported by phylogenetic analysis of complete mitochondrial genome sequences
详细信息    查看全文
  • 作者:Joong-Ki Park (1)
    Tahera Sultana (2)
    Sang-Hwa Lee (3)
    Seokha Kang (4)
    Hyong Kyu Kim (5)
    Gi-Sik Min (2)
    Keeseon S Eom (6)
    Steven A Nadler (7)
  • 关键词:Mitochondrial genome ; Molecular phylogeny ; Ascaridida ; Spirurida ; Oxyurida ; Chromadorea ; Nematoda
  • 刊名:BMC Genomics
  • 出版年:2011
  • 出版时间:December 2011
  • 年:2011
  • 卷:12
  • 期:1
  • 全文大小:365KB
  • 参考文献:1. Poinar GO Jr: Nematoda and Nematomorpha. In / Ecology and Classification of North American Freshwater Invertebrates. Edited by: Thorp JH, Covich AP. New York: Academic Press; 1991:249鈥?83.
    2. Ferris H, Bongers T, de Goede RGM: A framework for soil food web diagnostics: extension of the nematode faunal analysis concept. / Applied Soil Ecology 2001, 18:12鈥?9. CrossRef
    3. Yeates GW, Ferris H, Moens T, van der Putten WH: The role of nematodes in ecosystems. In / Nematodes as Environmental Bioindicators. Edited by: Wilson MJ, Kakouli-Duarte T. Wallingford, UK: CABI; 2009:1鈥?4. CrossRef
    4. Malakhov VV: / Nematodes-Structure, development, classification, and phylogeny. Washington: Smithsonian Institution Press; 1994.
    5. Traunspurger W, Michiels IC, Abebe E: Composition and distribution of freeliving freshwater nematodes: global and local perspectives. In / Freshwater Nematodes: Ecology and Taxonomy. Edited by: Abebe E, Traunspurger W, Andr谩ssy I. UK: CABI; 2006:46鈥?6. CrossRef
    6. De Ley P, Blaxter ML: Systematic position and phylogeny. In / The Biology of Nematodes. Edited by: Lee BL. New York: Taylor & Francis Publisher; 2002:1鈥?0.
    7. Blaxter ML, De Ley P, Garey JR, Liu LX, Scheldeman P, Vierstraete A, Vanfleteren JR, Mackey LY, Dorris M, Frisse LM, Vida JT, Thomas WK: A molecular evolutionary framework for the phylum Nematoda. / Nature 1998, 392:71鈥?5. CrossRef
    8. Holterman M, van der Wurff A, van den Elsen S, van Megen H, Bongers T, Holovachov O, Bakker J, Helder J: Phylum-wide analysis of SSU rDNA reveals deep phylogenetic relationships among nematodes and accelerated evolution toward crown clades. / Mol Biol Evol 2006, 23:1792鈥?800. CrossRef
    9. Meldal BHM, Debenham NJ, De Ley P, De ley IT, Vanfleteren JR, Vierstraete AR, Bert W, Borgonie G, Moens T, Tyler PA, Austen MC, Blaxter ML, Rogers AD, Lambshead PJD: An improved molecular phylogeny of the Nematoda with special emphasis on marine taxa. / Mol Phylogenet Evol 2007, 42:622鈥?36. CrossRef
    10. Nadler SA, Carreno RA, Mej铆a-Madrid H, Ullberg J, Pagan C, Houston R, Hugot JP: Molecular phylogeny of clade III nematodes reveals multiple origins of tissue parasitism. / Parasitology 2007, 134:1421鈥?442. CrossRef
    11. Nadler SA, De Ley P, Mundo-Ocampo M, Smythe AB, Stock SP, Bumbarger D, Adams BJ, De Ley IT, Holovachov O, Baldwin JG: Phylogeny of Cephalobina (Nematoda): Molecular evidence for recurrent evolution of probolae and incongruence with traditional classifications. / Mol Phylogenet Evol 2006, 40:696鈥?11. CrossRef
    12. Chilton NB, Huby-Chilton F, Gasser RB, Beveridge I: The evolutionary origins of nematodes within the order Strongylida are related to predilection sites within hosts. / Mol Phylogenet Evol 2006, 40:118鈥?28. CrossRef
    13. Subbotin SA, Sturhan D, Chizhov VN, Volvas N, Baldwin JG: Phylogenetic analysis of Tylenchida Thorne, 1949 as inferred from D2 and D3 expansion fragments of the 28S rRNA gene sequences. / Nematology 2006, 8:455鈥?74. CrossRef
    14. Bert W, Leliaert F, Vierstraete AR, Vanfleteren JR, Borgonie G: Molecular phylogeny of the Tylenchina and evolution of the female gonoduct (Nematoda: Rhabtitida). / Mol Phylogenet Evol 2008, 48:728鈥?44. CrossRef
    15. Nadler SA, Bolotin E, Stock SP: Phylogenetic relationships of Steinernema (Cephalobina: Steinernematidae) based on nuclear, mitochondrial, and morphological data. / Syst Parasitol 2006, 63:161鈥?81. CrossRef
    16. Ma H, Overstreet RM, Subbotin SA: ITS2 secondary structure andphylogeny of cyst-forming nematodes of the genus Heterodera (Tylenchida: Heteroderidae). / Org Divers Evol 2008, 8:182鈥?93. CrossRef
    17. Hazir C, Giblin-Davis RM, Keskin N, Ye W, Hazir S, Scheuhl E, Thomas WK: Diversity and distribution of nematodes associated with wild bees in Turkey. / Nematology 2010, 12:65鈥?0. CrossRef
    18. De Ley P, Blaxter ML: A new system for Nematoda: combining morphological characters with molecular trees, and translating clades into ranks and taxa. In / Nematology Monographs and Perspectives 2. Edited by: Cook R, Hunt DJ. Leiden: E.J. Brill Publisher; 2004:633鈥?53.
    19. Hu M, Chilton NB, Gasser RB: The mitochondrial genome of Strongyloides stercoralis (Nematoda)-idiosyncratic gene order and evolutionary implications. / Int J Parasitol 2003, 33:1393鈥?408. CrossRef
    20. Kim KH, Eom KS, Park JK: The complete mitochondrial genome of Anisakis simplex (Ascaridida. Nematoda) and phylogenetic implications. / Int J Parasitol 2006, 36:319鈥?28. CrossRef
    21. Kang S, Sultana T, Eom KS, Park YC, Soonthornpong N, Nadler SA, Park JK: The mitochondrial genome sequence of Enterobius vermicularis (Nematoda. Oxyurida) - An idiosyncratic gene order and phylogenetic information for chromadorean nematodes. / Gene 2009, 429:87鈥?7. CrossRef
    22. Jex AR, Hall RS, Littlewood DTJ, Gasser RB: An integrated pipeline for next-generation sequencing and annotation of mitochondrial genomes. / Nucleic Acids Res 38:522鈥?33.
    23. Lavrov DV, Brown WM: Trichinella spiralis mtDNA: a nematode mitochondrial genome that encodes a putative ATP8 and normally structured tRNAs and has a gene arrangement relatable to those of coelomate metazoans. / Genetics 2001, 157:621鈥?37.
    24. Keddie EM, Higazi T, Unnasch TR: The mitochondrial genome of Onchocerca volvulus : sequence, structure and phylogenetic analysis. / Mol Biochem Parasitol 1998, 95:111鈥?27. CrossRef
    25. Li MW, Lin RQ, Song HQ, Wu XY, Zhu XQ: The complete mitochondrial genomes for three Toxocara species of human and animal health significance. / BMC Genomics 2008, 9:224. CrossRef
    26. Okimoto R, Macfarlane JL, Clary DO, Wolstenholme DR: The mitochondrial genomes of two Nematodes, Caenorhabditis elegans and Ascaris suum . / Genetics 1992, 130:471鈥?98.
    27. Hu M, Chilton NB, Gasser RB: The mitochondrial genomes of the human hookworms, Ancylostoma duodenale and Necator americanus (Nematoda. Secernentea). / Int J Parasitol 2002, 32:145鈥?58. CrossRef
    28. Hu M, Gasser RB, Abs EL-Osta YG, Chilton NB: Structure and organization of the mitochondrial genome of the canine heartworm, Dirofilaria immitis . / Parasitology 2003, 127:37鈥?1. CrossRef
    29. Jex AR, Hu M, Littlewood DTJ, Waeschenbach A, Gasser RB: Using 454 technology for long-PCR based sequencing of the complete mitochondrial genome from single Haemonchus contortus (Nematoda). / BMC Genomics 2008, 11:11. CrossRef
    30. Hassanin A, L茅ger N, Deutsch J: Evidence for multiple reversals of asymmetric mutational constraints during the evolution of the mitochondrial genome of metazoa, and consequences for phylogenetic inferences. / Syst Biol 2005, 54:277鈥?98. CrossRef
    31. Hassanin A: Phylogeny of Arthropoda inferred from mitochondrial sequences: Strategies for limiting the misleading effects of multiple changes in pattern and rates of substitution. / Mol Phylogenet Evol 2006, 38:100鈥?16. CrossRef
    32. Hyman BC, Lewis SC, Tang S, Wu Z: Rampant gene rearrangement and haplotype hypervariation among nematode mitochondrial genomes. / Genetica 2011, 139:611鈥?15. CrossRef
    33. Smythe AB, Sanderson MJ, Nadler SA: Nematode small subunit phylogeny correlates with alignment parameters. / Syst Biol 2006, 55:972鈥?92. CrossRef
    34. Anderson RC, Bain O: Keys to genera of the superfamilies Rhabditoidea, Dioctophymatoidea, Trichinelloidea and Muspiceoidea. No. 9. In / CIH keys to the nematode parasites of vertebrates. Edited by: Anderson RC, Chabaud AG, Willmott S. Farnham Royal,Bucks, England: Commonwealth Agricultural Bureaux; 1982:1鈥?6.
    35. Anderson RC: / Nematode parasites of vertebrates: their development and transmission. 2nd edition. New York: CABI; 2000. CrossRef
    36. Chitwood BG: Nemic relationships. In / An Introduction to Nematology. Edited by: Chitwood BG, Chitwood MB. Baltimore: Chitwood BG; 1950:191鈥?05.
    37. Maggenti AR: / General nematology. New York: Springer-Verlag Press; 1981.
    38. Maggenti AR: Nematode higher classification as influenced by species and family concepts. In / Concepts in Nematode Systematics. Edited by: Stone AR, Platt HM, Khalil LF. London: Academic Press; 1983:25鈥?0.
    39. Anderson RC: Nematode transmission patterns. / J Parasitol 1988, 74:30鈥?5. CrossRef
    40. Inglis WG: Patterns of evolution in parasitic nematodes. In / Third Symposium of the British Society for Parasitology. Edited by: Taylor AER. London: Blackwell Scientific Publications; 1965:79鈥?24.
    41. Inglis WG: An outline classification of the phylum Nematoda. / Aust J Zool 1983, 31:243鈥?55. CrossRef
    42. Dorris M, De Lay P, Blaxter ML: Molecular analysis of nematode diversity and the evolution of parasitism. / Parasitol Today 1999, 15:188鈥?93. CrossRef
    43. Boore JL, Brown WM: Big trees from little genomes: mitochondrial gene order as a phylogenetic tool. / Curr Opin Genetics Deve 1998, 8:668鈥?74. CrossRef
    44. Boore JL: Animal mitochondrial genomes. / Nucleic Acids Res 1999, 27:1767鈥?780. CrossRef
    45. Lavrov DV, Lang BF: Poriferan mtDNA and animal phylogeny based on mitochondrial gene arrangements. / Syst Biol 2005, 54:651鈥?59. CrossRef
    46. Tang S, Hyman BC: Mitochondrial genome haplotype hypervariation within the isopod parasitic nematode Thaumamermis cosgrovei . / Genetics 2007, 176:1139鈥?150. CrossRef
    47. Boore JL, Medina M, Rosenberg LA: Complete sequences of the highly rearranged molluscan mitochondrial genomes of the scaphopod Graptacme eborea and the bivalve Mytilus edulis . / Mol Biol Evol 2004, 21:1492鈥?503. CrossRef
    48. Valles Y, Boore JL: Lophotrochozoan mitochondrial genomes. / Integr Comp Biol 2006, 46:544鈥?57. CrossRef
    49. Stach T, Braband A, Podsiadlowski L: Erosion of phylogenetic signal in tunicate mitochondrial genomes on different levels of analysis. / Mol Phylogenet Evol 2010, 55:860鈥?70. CrossRef
    50. Kilpert F, Podsiadlowski L: The complete mitochondrial genome of the common sea slater, Ligia oceanica (Crustacea, Isopoda) bears a novel gene order and unusual control region features. / BMC Genomics 2006, 7:241. CrossRef
    51. Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R: DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. / Mol Mar Biol Biotechnol 1994, 3:294鈥?99.
    52. Lowe TM, Eddy SR: tRNAscan-SE: a program for improved detection of transfer RNA genes in genome sequences. / Nucleic Acids Res 1997, 25:955鈥?64. CrossRef
    53. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG: The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. / Nucleic Acids Res 1997, 25:4876鈥?882. CrossRef
    54. Wernersson R, Pedersen AG: RevTrans: multiple alignment of coding DNA from aligned amino acid sequences. / Nucleic Acids Res 2003, 31:3537鈥?539. CrossRef
    55. Huelsenbeck JP, Ronquist F: MrBayes: Bayesian inference of phylogeny. / Bioinformatics 2001, 17:754鈥?55. CrossRef
    56. Stamatakis A: RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. / Bioinformatics 2006, 22:2688鈥?690. CrossRef
    57. Shimodaira H, Hasagawa M: Multiple comparisons of log-likelihoods with applications to phylogenetic inference. / Mol Biol Evol 1999, 16:1114鈥?116.
    58. Nylander JAA: [http://www.abc.se/~nylander/] / MrModeltest v2 Program distributed by the author. Evolutionary Biology Centre, Uppsala University; 2004.
  • 作者单位:Joong-Ki Park (1)
    Tahera Sultana (2)
    Sang-Hwa Lee (3)
    Seokha Kang (4)
    Hyong Kyu Kim (5)
    Gi-Sik Min (2)
    Keeseon S Eom (6)
    Steven A Nadler (7)

    1. Graduate Program in Cell Biology and Genetics and Department of Parasitology, College of Medicine, Chungbuk National University, Cheongju, 361-763, Korea
    2. Department of Biological Sciences, Inha University, Incheon, 402-751, Korea
    3. Graduate Program in Cell Biology and Genetics, College of Medicine, Chungbuk National University, Cheongju, 361-763, Korea
    4. Department of Biotechnology and Bioinformatics, College of Science and Technology, Korea University, Chungnam, Korea
    5. Department of Microbiology, College of Medicine, Chungbuk National University, Cheongju, 361-763, Korea
    6. Department of Parasitology, College of Medicine, Chungbuk National University, Cheongju, 361-763, Korea
    7. Department of Nematology, University of California, Davis, CA, 95616, USA
文摘
Background The orders Ascaridida, Oxyurida, and Spirurida represent major components of zooparasitic nematode diversity, including many species of veterinary and medical importance. Phylum-wide nematode phylogenetic hypotheses have mainly been based on nuclear rDNA sequences, but more recently complete mitochondrial (mtDNA) gene sequences have provided another source of molecular information to evaluate relationships. Although there is much agreement between nuclear rDNA and mtDNA phylogenies, relationships among certain major clades are different. In this study we report that mtDNA sequences do not support the monophyly of Ascaridida, Oxyurida and Spirurida (clade III) in contrast to results for nuclear rDNA. Results from mtDNA genomes show promise as an additional independently evolving genome for developing phylogenetic hypotheses for nematodes, although substantially increased taxon sampling is needed for enhanced comparative value with nuclear rDNA. Ultimately, topological incongruence (and congruence) between nuclear rDNA and mtDNA phylogenetic hypotheses will need to be tested relative to additional independent loci that provide appropriate levels of resolution. Results For this comparative phylogenetic study, we determined the complete mitochondrial genome sequences of three nematode species, Cucullanus robustus (13,972 bp) representing Ascaridida, Wellcomia siamensis (14,128 bp) representing Oxyurida, and Heliconema longissimum (13,610 bp) representing Spirurida. These new sequences were used along with 33 published nematode mitochondrial genomes to investigate phylogenetic relationships among chromadorean orders. Phylogenetic analyses of both nucleotide and amino acid sequence datasets support the hypothesis that Ascaridida is nested within Rhabditida. The position of Oxyurida within Chromadorea varies among analyses; in most analyses this order is sister to the Ascaridida plus Rhabditida clade, with representative Spirurida forming a distinct clade, however, in one case Oxyurida is sister to Spirurida. Ascaridida, Oxyurida, and Spirurida (the sampled clade III taxa) do not form a monophyletic group based on complete mitochondrial DNA sequences. Tree topology tests revealed that constraining clade III taxa to be monophyletic, given the mtDNA datasets analyzed, was a significantly worse result. Conclusion The phylogenetic hypotheses from comparative analysis of the complete mitochondrial genome data (analysis of nucleotide and amino acid datasets, and nucleotide data excluding 3rd positions) indicates that nematodes representing Ascaridida, Oxyurida and Spirurida do not share an exclusive most recent common ancestor, in contrast to published results based on nuclear ribosomal DNA. Overall, mtDNA genome data provides reliable support for nematode relationships that often corroborates findings based on nuclear rDNA. It is anticipated that additional taxonomic sampling will provide a wealth of information on mitochondrial genome evolution and sequence data for developing phylogenetic hypotheses for the phylum Nematoda.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700