Network analysis identifies protein clusters of functional importance in juvenile idiopathic arthritis
详细信息    查看全文
  • 作者:Adam Stevens (1)
    Stefan Meyer (1) (2)
    Daniel Hanson (1)
    Peter Clayton (1)
    Rachelle Donn (3)

    1. Manchester Academic Health Sciences Centre
    ; Royal Manchester Children鈥檚 Hospital ; Manchester ; M13 9WL ; UK
    2. Stem Cell and Leukaemia Proteomics Laboratory
    ; School of Cancer and Imaging Sciences ; University of Manchester ; Manchester ; UK
    3. Centre for Musculoskeletal Research
    ; University of Manchester ; Manchester ; M13 9PT ; UK
  • 刊名:Arthritis Research & Therapy
  • 出版年:2014
  • 出版时间:June 2014
  • 年:2014
  • 卷:16
  • 期:3
  • 全文大小:934 KB
  • 参考文献:1. Petty, RE, Southwood, TR, Manners, P, Baum, J, Glass, DN, Goldenberg, J, He, X, Maldonado-Cocco, J, Orozco-Alcala, J, Prieur, AM, Suarez-Almazor, ME, Woo, P (2004) International League of Associations for Rheumatology classification of juvenile idiopathic arthritis: second revision, Edmonton, 2001. J Rheumatol 31: pp. 390-392
    2. Hyrich, KL, Lal, SD, Foster, HE, Thornton, J, Adib, N, Baildam, E, Gardner-Medwin, J, Wedderburn, LR, Chieng, A, Davidson, J, Thomson, W (2010) Disease activity and disability in children with juvenile idiopathic arthritis one year following presentation to paediatric rheumatology. Results from the Childhood Arthritis Prospective Study. Rheumatology (Oxford) 49: pp. 116-122 matology/kep352" target="_blank" title="It opens in new window">CrossRef
    3. Ravelli, A, Martini, A (2007) Juvenile idiopathic arthritis. Lancet 369: pp. 767-778 CrossRef
    4. Bertilsson, L, Andersson-Gare, B, Fasth, A, Petersson, IF, Forsblad-d'Elia, H (2013) Disease course, outcome, and predictors of outcome in a population-based juvenile chronic arthritis cohort followed for 17聽years. J Rheumatol 40: pp. 715-724 m.120602" target="_blank" title="It opens in new window">CrossRef
    5. Prahalad, S, Glass, DN (2008) A comprehensive review of the genetics of juvenile idiopathic arthritis. Pediatr Rheumatol Online J 6: pp. 11 CrossRef
    6. Thompson, SD, Marion, MC, Sudman, M, Ryan, M, Tsoras, M, Howard, TD, Barnes, MG, Ramos, PS, Thomson, W, Hinks, A, Haas, JP, Prahalad, S, Bohnsack, JF, Wise, CA, Punaro, M, Ros茅, CD, Pajewski, NM, Spigarelli, M, Keddache, M, Wagner, M, Langefeld, CD, Glass, DN (2012) Genome-wide association analysis of juvenile idiopathic arthritis identifies a new susceptibility locus at chromosomal region 3q13. Arthritis Rheum 64: pp. 2781-2791 CrossRef
    7. Hinks, A, Cobb, J, Marion, MC, Prahalad, S, Sudman, M, Bowes, J, Martin, P, Comeau, ME, Sajuthi, S, Andrews, R, Brown, M, Chen, WM, Concannon, P, Deloukas, P, Edkins, S, Eyre, S, Gaffney, PM, Guthery, SL, Guthridge, JM, Hunt, SE, James, JA, Keddache, M, Moser, KL, Nigrovic, PA, Onengut-Gumuscu, S, Onslow, ML, Ros茅, CD, Rich, SS, Steel, KJ, Wakeland, EK (2013) Dense genotyping of immune-related disease regions identifies 14 new susceptibility loci for juvenile idiopathic arthritis. Nat Genet 45: pp. 664-669 CrossRef
    8. Barnes, MG, Grom, AA, Thompson, SD, Griffin, TA, Luyrink, LK, Colbert, RA, Glass, DN (2010) Biologic similarities based on age at onset in oligoarticular and polyarticular subtypes of juvenile idiopathic arthritis. Arthritis Rheum 62: pp. 3249-3258 CrossRef
    9. Barnes, MG, Aronow, BJ, Luyrink, LK, Moroldo, MB, Pavlidis, P, Passo, MH, Grom, AA, Hirsch, R, Giannini, EH, Colbert, RA, Glass, DN, Thompson, SD (2004) Gene expression in juvenile arthritis and spondyloarthropathy: pro-angiogenic ELR鈥?鈥塩hemokine genes relate to course of arthritis. Rheumatology (Oxford) 43: pp. 973-979 matology/keh224" target="_blank" title="It opens in new window">CrossRef
    10. Frank, MB, Wang, S, Aggarwal, A, Knowlton, N, Jiang, K, Chen, Y, McKee, R, Chaser, B, McGhee, T, Osban, J, Jarvis, JN (2009) Disease-associated pathophysiologic structures in pediatric rheumatic diseases show characteristics of scale-free networks seen in physiologic systems: implications for pathogenesis and treatment. BMC Med Genomics 2: pp. 9 CrossRef
    11. Chang, D, Keinan, A (2012) Predicting signatures of 鈥渟ynthetic associations鈥?and 鈥渘atural associations鈥?from empirical patterns of human genetic variation. PLoS Comput Biol 8: pp. e1002600 CrossRef
    12. Lee, Y, Li, H, Li, J, Rebman, E, Achour, I, Regan, KE, Gamazon, ER, Chen, JL, Yang, XH, Cox, NJ, Lussier, YA (2013) Network models of genome-wide association studies uncover the topological centrality of protein interactions in complex diseases. J Am Med Inform Assoc 20: pp. 619-629 miajnl-2012-001519" target="_blank" title="It opens in new window">CrossRef
    13. Yeang, CH, Haussler, D (2007) Detecting coevolution in and among protein domains. PLoS Comput Biol 3: pp. e211 CrossRef
    14. Agarwal, S, Deane, CM, Porter, MA, Jones, NS (2010) Revisiting date and party hubs: novel approaches to role assignment in protein interaction networks. PLoS Comput Biol 6: pp. e1000817 CrossRef
    15. Han, JD, Bertin, N, Hao, T, Goldberg, DS, Berriz, GF, Zhang, LV, Dupuy, D, Walhout, AJ, Cusick, ME, Roth, FP, Vidal, M (2004) Evidence for dynamically organized modularity in the yeast protein-protein interaction network. Nature 430: pp. 88-93 CrossRef
    16. Lemos, B, Meiklejohn, CD, Hartl, DL (2004) Regulatory evolution across the protein interaction network. Nat Genet 36: pp. 1059-1060 CrossRef
    17. Duan, S, Luo, X, Dong, C (2013) Identification of susceptibility modules for coronary artery disease using a genome wide integrated network analysis. Gene 531: pp. 347-354 CrossRef
    18. Vidal, M, Cusick, ME, Barabasi, AL (2011) Interactome networks and human disease. Cell 144: pp. 986-998 CrossRef
    19. Goh, KI, Cusick, ME, Valle, D, Childs, B, Vidal, M, Barabasi, AL (2007) The human disease network. Proc Natl Acad Sci USA 104: pp. 8685-8690 CrossRef
    20. Randhawa, V, Bagler, G (2012) Identification of SRC as a potent drug target for asthma, using an integrative approach of protein interactome analysis and in silico drug discovery. OMICS 16: pp. 513-526
    21. Zhao, S, Iyengar, R (2012) Systems pharmacology: network analysis to identify multiscale mechanisms of drug action. Annu Rev Pharmacol Toxicol 52: pp. 505-521 mtox-010611-134520" target="_blank" title="It opens in new window">CrossRef
    22. PubMed. [m.nih.gov/pubmed" class="a-plus-plus">http://www.ncbi.nlm.nih.gov/pubmed]
    23. Web of Science. [m" class="a-plus-plus">http://www.webofknowledge.com]
    24. Donn, R, Alourfi, Z, Zeggini, E, Lamb, R, Jury, F, Lunt, M, Meazza, C, De, BF, Thomson, W, Ray, D (2004) A functional promoter haplotype of macrophage migration inhibitory factor is linked and associated with juvenile idiopathic arthritis. Arthritis Rheum 50: pp. 1604-1610 CrossRef
    25. Lamb, R, Thomson, W, Ogilvie, E, Donn, R (2005) Wnt-1-inducible signaling pathway protein 3 and susceptibility to juvenile idiopathic arthritis. Arthritis Rheum 52: pp. 3548-3553 CrossRef
    26. Hinks, A, Eyre, S, Ke, X, Barton, A, Martin, P, Flynn, E, Packham, J, Worthington, J, Thomson, W (2010) Overlap of disease susceptibility loci for rheumatoid arthritis and juvenile idiopathic arthritis. Ann Rheum Dis 69: pp. 1049-1053 CrossRef
    27. Thompson, SD, Sudman, M, Ramos, PS, Marion, MC, Ryan, M, Tsoras, M, Weiler, T, Wagner, M, Keddache, M, Haas, JP, Mueller, C, Prahalad, S, Bohnsack, J, Wise, CA, Punaro, M, Zhang, D, Ros茅, CD, Comeau, ME, Divers, J, Glass, DN, Langefeld, CD (2010) The susceptibility loci Juvenile Idiopathic Arthritis shares with other autoimmune diseases extend to PTPN2, COG6 and ANGPT1. Arthritis Rheum 62: pp. 3265-3276 CrossRef
    28. Hinks, A, Barton, A, John, S, Bruce, I, Hawkins, C, Griffiths, CE, Donn, R, Thomson, W, Silman, A, Worthington, J (2005) Association between the PTPN22 gene and rheumatoid arthritis and juvenile idiopathic arthritis in a UK population: further support that PTPN22 is an autoimmunity gene. Arthritis Rheum 52: pp. 1694-1699 CrossRef
    29. Hinks, A, Cobb, J, Sudman, M, Eyre, S, Martin, P, Flynn, E, Packham, J, Barton, A, Worthington, J, Langefeld, CD, Glass, DN, Thompson, SD, Thomson, W (2012) Investigation of rheumatoid arthritis susceptibility loci in juvenile idiopathic arthritis confirms high degree of overlap. Ann Rheum Dis 71: pp. 1117-1121 mdis-2011-200814" target="_blank" title="It opens in new window">CrossRef
    30. Hinks, A, Barton, A, Shephard, N, Eyre, S, Bowes, J, Cargill, M, Wang, E, Ke, X, Kennedy, GC, John, S, Worthington, J, Thomson, W (2009) Identification of a novel susceptibility locus for juvenile idiopathic arthritis by genome-wide association analysis. Arthritis Rheum 60: pp. 258-263 CrossRef
    31. Raychaudhuri, S, Plenge, RM, Rossin, EJ, Ng, AC, Purcell, SM, Sklar, P, Scolnick, EM, Xavier, RJ, Altshuler, D, Daly, MJ (2009) Identifying relationships among genomic disease regions: predicting genes at pathogenic SNP associations and rare deletions. PLoS Genet 5: pp. e1000534 CrossRef
    32. GRAIL: Gene Relationships Across Implicated Loci. [mpg/grail/" class="a-plus-plus">http://www.broadinstitute.org/mpg/grail/]
    33. Stevens, A, De Leonibus, C, Hanson, D, Dowsey, AW, Whatmore, A, Meyer, S, Donn, RP, Chatelain, P, Banerjee, I, Cosgrove, KE, Clayton, PE, Dunne, MJ (2013) Network analysis: a new approach to study endocrine disorders. J Mol Endocrinol 52: pp. R79-R93 CrossRef
    34. Chatr-Aryamontri, A, Breitkreutz, BJ, Heinicke, S, Boucher, L, Winter, A, Stark, C, Nixon, J, Ramage, L, Kolas, N, O'Donnell, L, Reguly, T, Breitkreutz, A, Sellam, A, Chen, D, Chang, C, Rust, J, Livstone, M, Oughtred, R, Dolinski, K, Tyers, M (2013) The BioGRID interaction database: 2013 update. Nucleic Acids Res 41: pp. D816-D823 CrossRef
    35. Lin, CY, Chin, CH, Wu, HH, Chen, SH, Ho, CW, Ko, MT (2008) Hubba: hub objects analyzer鈥揳 framework of interactome hubs identification for network biology. Nucleic Acids Res 36: pp. W438-W443 CrossRef
    36. Yu, H, Kim, PM, Sprecher, E, Trifonov, V, Gerstein, M (2007) The importance of bottlenecks in protein networks: correlation with gene essentiality and expression dynamics. PLoS Comput Biol 3: pp. e59 CrossRef
    37. Stevens, A, Hanson, D, Whatmore, A, Destenaves, B, Chatelain, P, Clayton, P (2013) Human growth is associated with distinct patterns of gene expression in evolutionarily conserved networks. BMC Genomics 14: pp. 547 CrossRef
    38. Stevens, A, Clayton, P, Tat貌, L, Yoo, HW, Rodriguez-Arnao, MD, Skorodok, J, Ambler, GR, Zignani, M, Zieschang, J, Della Corte, G, Destenaves, B, Champigneulle, A, Raelson, J, Chatelain, P (2013) Pharmacogenomics of insulin-like growth factor-I generation during GH treatment in children with GH deficiency or Turner syndrome. Pharmacogenomics J 14: pp. 54-62 CrossRef
    39. Smoot, ME, Ono, K, Ruscheinski, J, Wang, PL, Ideker, T (2011) Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics 27: pp. 431-432 matics/btq675" target="_blank" title="It opens in new window">CrossRef
    40. Cline, MS, Smoot, M, Cerami, E, Kuchinsky, A, Landys, N, Workman, C, Christmas, R, Avila-Campilo, I, Creech, M, Gross, B, Hanspers, K, Isserlin, R, Kelley, R, Killcoyne, S, Lotia, S, Maere, S, Morris, J, Ono, K, Pavlovic, V, Pico, AR, Vailaya, A, Wang, PL, Adler, A, Conklin, BR, Hood, L, Kuiper, M, Sander, C, Schmulevich, I, Schwikowski, B, Warner, GJ (2007) Integration of biological networks and gene expression data using Cytoscape. Nat Protoc 2: pp. 2366-2382 CrossRef
    41. Newman, ME (2006) Modularity and community structure in networks. Proc Natl Acad Sci USA 103: pp. 8577-8582 CrossRef
    42. Rossin, EJ, Lage, K, Raychaudhuri, S, Xavier, RJ, Tatar, D, Benita, Y, Cotsapas, C, Daly, MJ (2011) Proteins encoded in genomic regions associated with immune-mediated disease physically interact and suggest underlying biology. PLoS Genet 7: pp. e1001273 CrossRef
    43. The DAPPLE algorithm. [mpg/dapple/dapple.php" class="a-plus-plus">http://www.broadinstitute.org/mpg/dapple/dapple.php]
    44. InWeb Database. [http://www.cbs.dtu.dk/suppl/dgf/]
    45. Gene Expression Omnibus. [m.nih.gov/geo/" class="a-plus-plus">http://www.ncbi.nlm.nih.gov/geo/]
    46. Lee, HM, Sugino, H, Aoki, C, Nishimoto, N (2011) Underexpression of mitochondrial-DNA encoded ATP synthesis-related genes and DNA repair genes in systemic lupus erythematosus. Arthritis Res Ther 13: pp. R63 CrossRef
    47. Tenenbaum, JB, De, SV, Langford, JC (2000) A global geometric framework for nonlinear dimensionality reduction. Science 290: pp. 2319-2323 CrossRef
    48. Nilsson, J, Fioretos, T, Hoglund, M, Fontes, M (2004) Approximate geodesic distances reveal biologically relevant structures in microarray data. Bioinformatics 20: pp. 874-880 matics/btg496" target="_blank" title="It opens in new window">CrossRef
    49. Bader, GD, Hogue, CW (2003) An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinforma 4: pp. 2 CrossRef
    50. Benjamini, YHY (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Se B Methodological 57: pp. 289-300
    51. Ravasz, E, Barabasi, AL (2003) Hierarchical organization in complex networks. Phys Rev E Stat Nonlin Soft Matter Phys 67: pp. 026112 CrossRef
    52. van Dongen, S, Breu-Goodger, C (2012) Using MCL to extract clusters from networks. Methods Mol Biol 804: pp. 281-295 CrossRef
    53. Pedroso, I (2010) Gaining a pathway insight into genetic association data. Methods Mol Biol 628: pp. 373-382 CrossRef
    54. Hua, L, Zhou, P, Liu, H, Li, L, Yang, Z, Liu, ZC (2011) Mining susceptibility gene modules and disease risk genes from SNP data by combining network topological properties with support vector regression. J Theor Biol 289: pp. 225-236 CrossRef
    55. Sun, YV (2012) Integration of biological networks and pathways with genetic association studies. Hum Genet 131: pp. 1677-1686 CrossRef
    56. Choi, H, Pavelka, N (2011) When one and one gives more than two: challenges and opportunities of integrative omics. Front Genet 2: pp. 105 CrossRef
    57. Ideker, T, Dutkowski, J, Hood, L (2011) Boosting signal-to-noise in complex biology: prior knowledge is power. Cell 144: pp. 860-863 CrossRef
    58. Aloy, P, Russell, RB (2004) Taking the mystery out of biological networks. EMBO Rep 5: pp. 349-350 mbor.7400129" target="_blank" title="It opens in new window">CrossRef
    59. Arrell, DK, Terzic, A (2013) Interpreting networks in systems biology. Clin Pharmacol Ther 93: pp. 389-392 CrossRef
    60. Barabasi, AL, Albert, R (1999) Emergence of scaling in random networks. Science 286: pp. 509-512 CrossRef
    61. Barabasi, AL (2009) Scale-free networks: a decade and beyond. Science 325: pp. 412-413 CrossRef
    62. Albert, R, Jeong, H, Barabasi, AL (2000) Error and attack tolerance of complex networks. Nature 406: pp. 378-382 CrossRef
    63. Fusello, AM, Mandik-Nayak, L, Shih, F, Lewis, RE, Allen, PM, Shaw, AS (2006) The MAPK scaffold kinase suppressor of Ras is involved in ERK activation by stress and proinflammatory cytokines and induction of arthritis. J Immunol 177: pp. 6152-6158 mmunol.177.9.6152" target="_blank" title="It opens in new window">CrossRef
    64. Nguyen, A, Burack, WR, Stock, JL, Kortum, R, Chaika, OV, Afkarian, M, Muller, WJ, Murphy, KM, Morrison, DK, Lewis, RE, McNeish, J, Shaw, AS (2002) Kinase suppressor of Ras (KSR) is a scaffold which facilitates mitogen-activated protein kinase activation in vivo. Mol Cell Biol 22: pp. 3035-3045 CrossRef
    65. Zikherman, J, Weiss, A (2011) Unraveling the functional implications of GWAS: how T cell protein tyrosine phosphatase drives autoimmune disease. J Clin Invest 121: pp. 4618-4621 CrossRef
    66. Csermely, P, Korcsmaros, T, Kiss, HJ, London, G, Nussinov, R (2013) Structure and dynamics of molecular networks: A novel paradigm of drug discovery: A comprehensive review. Pharmacol Ther 138: pp. 333-408 mthera.2013.01.016" target="_blank" title="It opens in new window">CrossRef
    67. Weiss, JN, Karma, A, MacLellan, WR, Deng, M, Rau, CD, Rees, CM, Wang, J, Wisniewski, N, Eskin, E, Horvath, S, Qu, Z, Wang, Y, Lusis, AJ (2012) 鈥淕ood enough solutions鈥?and the genetics of complex diseases. Circ Res 111: pp. 493-504 CrossRef
    68. TargetScan human database. [http://www.targetscan.org/]
    69. Dai, Y, Sui, W, Lan, H, Yan, Q, Huang, H, Huang, Y (2009) Comprehensive analysis of microRNA expression patterns in renal biopsies of lupus nephritis patients. Rheumatol Int 29: pp. 749-754 CrossRef
    70. Kim, JW, You, YH, Jung, S, Suh-Kim, H, Lee, IK, Cho, JH, Yoon, KH (2013) miRNA-30a-5p-mediated silencing of Beta2/NeuroD expression is an important initial event of glucotoxicity-induced beta cell dysfunction in rodent models. Diabetologia 56: pp. 847-855 CrossRef
    71. Wang, X, Wang, K, Han, L, Zhang, A, Shi, Z, Zhang, K, Zhang, H, Yang, S, Pu, P, Shen, C, Yu, C, Kang, C (2013) PRDM1 is directly targeted by miR-30a-5p and modulates the Wnt/beta-catenin pathway in a Dkk1-dependent manner during glioma growth. Cancer Lett 331: pp. 211-219 CrossRef
    72. Baraniskin, A, Birkenkamp-Demtroder, K, Maghnouj, A, Zollner, H, Munding, J, Klein-Scory, S, Reinacher-Schick, A, Schwarte-Waldhoff, I, Schmiegel, W, Hahn, SA (2012) MiR-30a-5p suppresses tumor growth in colon carcinoma by targeting DTL. Carcinogenesis 33: pp. 732-739 CrossRef
    73. Wu, Y, Crawford, M, Mao, Y, Lee, RJ, Davis, IC, Elton, TS, Lee, LJ, Nana-Sinkam, SP (2013) Therapeutic delivery of microRNA-29b by cationic lipoplexes for lung cancer. Mol Ther Nucleic Acids 2: pp. e84 mtna.2013.14" target="_blank" title="It opens in new window">CrossRef
  • 刊物主题:Rheumatology; Orthopedics;
  • 出版者:BioMed Central
  • ISSN:1478-6354
文摘
Introduction Our objective was to utilise network analysis to identify protein clusters of greatest potential functional relevance in the pathogenesis of oligoarticular and rheumatoid factor negative (RF-ve) polyarticular juvenile idiopathic arthritis (JIA). Methods JIA genetic association data were used to build an interactome network model in BioGRID 3.2.99. The top 10% of this protein:protein JIA Interactome was used to generate a minimal essential network (MEN). Reactome FI Cytoscape 2.83 Plugin and the Disease Association Protein-Protein Link Evaluator (Dapple) algorithm were used to assess the functionality of the biological pathways within the MEN and to statistically rank the proteins. JIA gene expression data were integrated with the MEN and clusters of functionally important proteins derived using MCODE. Results A JIA interactome of 2,479 proteins was built from 348 JIA associated genes. The MEN, representing the most functionally related components of the network, comprised of seven clusters, with distinct functional characteristics. Four gene expression datasets from peripheral blood mononuclear cells (PBMC), neutrophils and synovial fluid monocytes, were mapped onto the MEN and a list of genes enriched for functional significance identified. This analysis revealed the genes of greatest potential functional importance to be PTPN2 and STAT1 for oligoarticular JIA and KSR1 for RF-ve polyarticular JIA. Clusters of 23 and 14 related proteins were derived for oligoarticular and RF-ve polyarticular JIA respectively. Conclusions This first report of the application of network biology to JIA, integrating genetic association findings and gene expression data, has prioritised protein clusters for functional validation and identified new pathways for targeted pharmacological intervention.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700