Birefringence and Second Harmonic Generation on Tendon Collagen Following Red Linearly Polarized Laser Irradiation
详细信息    查看全文
  • 作者:Daniela Fátima Teixeira Silva (1) (4)
    Anderson Stevens Leonidas Gomes (2)
    Benedicto de Campos Vidal (3)
    Martha Sim?es Ribeiro (4)
  • 关键词:Animal model ; Form birefringence ; He–Ne laser ; Intrinsic birefringence ; Nonlinear susceptibility
  • 刊名:Annals of Biomedical Engineering
  • 出版年:2013
  • 出版时间:April 2013
  • 年:2013
  • 卷:41
  • 期:4
  • 页码:752-762
  • 全文大小:569KB
  • 参考文献:1. Ait-Belkacem, D., / et al. Influence of birefringence on polarization resolved nonlinear microscopy and collagen SHG structural imaging. / Opt. Express 18(14):14859-4870, 2010. CrossRef
    2. Aspden, R. M., Y. E. Yarker, and D. W. Hukins. Collagen orientations in the meniscus of the knee joint. / J. Anat. 140(Pt 3):371-80, 1985.
    3. Bastos, J. L. N., R. F. Z. Lizarelli, and N. A. Parizotto. Comparative study of laser and LED systems of low intensity applied to tendon healing. / Laser Phys. 19(9):1925-931, 2009. CrossRef
    4. Boyd, R. W. Nonlinear Optics, 1 ed. New York: Academic Press, p. 439, 1992.
    5. Carrinho, P. M., / et al. Comparative study using 685-nm and 830-nm lasers in the tissue repair of tenotomized tendons in the mouse. / Photomed. Laser Surg. 24(6):754-58, 2006. CrossRef
    6. Castronuovo, G., G. Fava, and S. Giavelli. The skin role during a low level laser therapy. In: Lasers Applications in Medicine. Monduzzi: Bologna, 1992, pp. 19-4.
    7. Chung, H., / et al. The nuts and bolts of low-level laser (light) therapy. / Ann. Biomed. Eng. 40(2):516-33, 2012. CrossRef
    8. Cox, R. W., R. A. Grant, and R. W. Horne. The structure and assembly of collagen fibrils. I. Native-collagen fibrils and their formation from tropocollagen. / J. R. Microsc. Soc. 87:123-42, 1967. CrossRef
    9. de Aro, A. A., B. D. Vidal, and E. R. Pimentel. Biochemical and anisotropical properties of tendons. / Micron 43(2-):205-14, 2012.
    10. Fechete, R., / et al. Anisotropy of collagen fiber orientation in sheep tendon by 1H double-quantum-filtered NMR signals. / J. Magn. Reson. 162:166-75, 2003. CrossRef
    11. Freund, I., and M. Deutsch. 2Nd-Harmonic microscopy of biological tissue. / Opt. Lett. 11(2):94-6, 1986. CrossRef
    12. Geday, M. A. A novel method for quantifying birefringence: analysis of an equine radius bone. In: The Americas Microscopy and Analysis, 2003, p. 17.
    13. Genin, G. M., / et al. Functional grading of mineral and collagen in the attachment of tendon to bone. / Biophys. J. 97(4):976-85, 2009. CrossRef
    14. Gusachenko, I., G. Latour, and M. C. Schanne-Klein. Polarization-resolved second harmonic microscopy in anisotropic thick tissues. / Opt. Express 18(18):19339-9352, 2010. CrossRef
    15. Hecht, E. Optics, 3 ed. New York: Addison Wesley Publishing Company, p. 694, 1997.
    16. Jacques, S. L., J. R. Roman, and K. Lee. Imaging superficial tissues with polarized light. / Lasers Surg. Med. 26(2):119-29, 2000. CrossRef
    17. Kim, B.-M., / et al. Collagen structure and nonlinear susceptibility: effects of heat, glycation and enzymatic cleavage on second harmonic signal intensity. / Lasers Surg. Med. 27:329-35, 2000. CrossRef
    18. Kim, B. M., / et al. Polarization-dependent optical second-harmonic imaging of a rat-tail tendon. / J. Biomed. Optics 7(2):205-14, 2002. CrossRef
    19. Lehninger, A. L., D. L. Nelson, and M. M. Cox. Amino acids and proteins. In: Principles of Biochemistry. New York: Palgrave Macmillan, 2004, p. 1200.
    20. Lin, S. J., / et al. Monitoring the thermally induced structural transitions of collagen by use of second-harmonic generation microscopy. / Opt. Lett. 30(6):622-24, 2005. CrossRef
    21. Maitland, D. J., and J. T. Walsh. Quantitative measurements of linear birefringence during heating of native collagen. / Lasers Surg. Med. 20(3):310-18, 1997. CrossRef
    22. Masic, A., / et al. Observations of multiscale, stress-induced changes of collagen orientation in tendon by polarized raman spectroscopy. / Biomacromolecules 12(11):3989-996, 2011. m201008b">CrossRef
    23. Melacini, G., / et al. Hydration dynamics of the collagen triple helix by NMR. / J. Mol. Biol. 300:1041-048, 2000. mbi.2000.3919">CrossRef
    24. Mello, M. L. S., / et al. Change with age of anisotropic properties of collagen bundles. / Gerontology 25(1):2-, 1979. CrossRef
    25. Milch, R. A., L. J. Frisco, and E. A. Szymkowiak. Solid-state dielectric properties of aldehyde-treated goatskin collagen. / Biorheology 3:9-0, 1965.
    26. Na, G. C. Monomer and oligomer of type I collagen: molecular properties and fibril assembly. / Biochemistry 28(18):7161-167, 1989. CrossRef
    27. Ramshaw, J. A., N. K. Shah, and B. Brodsky. Gly-X-Y tripeptide frequencies in collagen: a context for host-guest triple-helical peptides. / J. Struct. Biol. 122(1-):86-1, 1998. CrossRef
    28. Ribeiro, M. S., / et al. Effects of low-intensity polarized visible laser radiation on skin burns: a light microscopy study. / J. Clin. Laser Med. Surg. 22(1):59-6, 2004. CrossRef
    29. Roth, S., and I. Freund. Second harmonic generation in collagen. / J. Chem. Phys. 70(4):1637-643, 1979. CrossRef
    30. Roth, S., and I. Freund. Second harmonic generation and orientational order in connective tissue: a mosaic model for fibril orientational ordering in rat-tail tendon. / J. Appl. Cryst. 15:72-8, 1982. CrossRef
    31. Salate, A. C. B., / et al. Effect of In-Ga-Al-P diode laser irradiation on angiogenesis in partial ruptures of Achilles tendon in rats. / Photomed. Laser Surg. 23(5):470-75, 2005. CrossRef
    32. Sankaran, V. and J. T. Walsh. Birefringence to monitor pathway-dependent collagen denaturation. / Lasers Surg. Med. 30(Suppl. 14):8, 2002.
    33. Silva, D. F. T., / et al. Collagen birefringence in skin repair in response to red polarized-laser therapy. / J. Biomed. Opt. 11(2):024002.1-24002.6, 2006.
    34. Stoller, P., / et al. Polarization-modulated second harmonic generation in collagen. / Biophys. J. 82(6):3330-342, 2002. CrossRef
    35. Theodossiou, T. A., / et al. Second harmonic generation confocal microscopy of collagen type I from rat tendon cryosections. / Biophys. J. 91(12):4665-677, 2006. CrossRef
    36. Tuchin, V. Optical properties of tissues with strong (multiple) scattering. In: Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis, edited by V. Tuchin. Bellingham: SPIE Press, 2000, p. 353.
    37. Tuchin, V. V. Fundamentals of the interaction of low-intensity laser radiation with biotissues: dosimetric and diagnostic therapeutics. / Bull. Russ. Acad. Soc. 59:1031-053, 1995.
    38. Verbiest, T., / et al. Strong enhancement of nonlinear optical properties through supramolecular chirality. / Science 282(5390):913-15, 1998. CrossRef
    39. Vidal, B. C. Form birefringence as applied to biopolymer and inorganic material supraorganization. / Biotech. Histochem. 85(6):365-78, 2010. CrossRef
    40. Vidal, B. C., and H. F. Carvalho. Aggregational state and molecular order of tendons as a function of age. / Matrix 10:48-7, 1990. CrossRef
    41. Vidal, B. C., / et al. Anisotropic properties of silver plus gold-impregnated collagen bundles: ADB and form birefringence curves. / Ann. Histochim. 20:15-6, 1975.
    42. Walrafen, G. E., and Y.-C. Chu. Nature of collagen-water hydration forces: a problem in water structure. / Chem. Phys. 258:427-46, 2000. CrossRef
    43. Williams, R. M., W. R. Zipfel, and W. W. Webb. Interpreting second-harmonic generation images of collagen I fibrils. / Biophys. J. 88(2):1377-386, 2005. CrossRef
    44. Yoshioka, K., and C. T. O’Konski. Electric properties of macromolecules. IX. Dipole moment, polarizability, and optical anisotropy factor of collagen in solution from electric birefringence. / Biopolymers 4(5):499-07, 1966. CrossRef
  • 作者单位:Daniela Fátima Teixeira Silva (1) (4)
    Anderson Stevens Leonidas Gomes (2)
    Benedicto de Campos Vidal (3)
    Martha Sim?es Ribeiro (4)

    1. Post-Graduation Program in Biophotonics Applied to Health Sciences, Universidade Nove de Julho (UNINOVE), S?o Paulo, SP, 01504-001, Brazil
    4. Centro de Lasers e Aplica??es, IPEN-CNEN/SP, S?o Paulo, SP, 05508-900, Brazil
    2. Departamento de Física, CCEN-UFPE, Recife, PE, 50670-901, Brazil
    3. Instituto de Biologia, IB-UNICAMP, Campinas, SP, 13084-971, Brazil
  • ISSN:1573-9686
文摘
Regarding the importance of type I collagen in understanding the mechanical properties of a range of tissues, there is still a gap in our knowledge of how proteins perform such work. There is consensus in literature that the mechanical characteristics of a tissue are primarily determined by the organization of its molecules. The purpose of this study was to characterize the organization of non-irradiated and irradiated type I collagen. Irradiation was performed with a linearly polarized HeNe laser (λ?=?632.8?nm) and characterization was undertaken using polarized light microscopy to investigate the birefringence and second harmonic generation to analyze nonlinear susceptibility. Rats received laser irradiation (P?=?6.0?mW, I?=?21.2?mW/cm2, E?≈?.3?J, ED?=?1.0?J/cm2) on their healthy Achilles tendons, which after were extracted to prepare the specimens. Our results show that irradiated samples present higher birefringence and greater non-linear susceptibility than non-irradiated samples. Under studied conditions, we propose that a red laser with polarization direction aligned in parallel to the tendon long axis promotes further alignment on the ordered healthy collagen fibrils towards the electric field incident. Thus, prospects for biomedical applications for laser polarized radiation on type I collagen are encouraging since it supports greater tissue organization.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700