用户名: 密码: 验证码:
Modelling of interfacial mass transfer in microfluidic solvent extraction: part I. Heterogenous transport
详细信息    查看全文
  • 作者:Lachlan R. Mason (1)
    Davide Ciceri (1)
    Dalton J. E. Harvie (1)
    Jilska M. Perera (1)
    Geoffrey W. Stevens (1)
  • 关键词:Diffusion ; Finite volume simulation ; Liquid/liquid interface ; Microfluidics ; Solvent extraction
  • 刊名:Microfluidics and Nanofluidics
  • 出版年:2013
  • 出版时间:2 - January 2013
  • 年:2013
  • 卷:14
  • 期:1
  • 页码:197-212
  • 全文大小:775KB
  • 参考文献:1. Akpa BS, Matthews SM, Sederman AJ, Yunus K, Fisher AC, Johns ML, Gladden LF (2007) Study of miscible and immiscible flows in a microchannel using Magnetic Resonance Imaging. Anal Chem 79:6128-134 CrossRef
    2. Aota A, Hibara A, Kitamori T (2007) Pressure balance at the liquid-liquid interface of micro countercurrent flows in microchips. Anal Chem 79(10):3919-924 CrossRef
    3. Aota A, Mawatari K, Kitamori R (2009) Parallel multiphase microflows: fundamental physics, stabilization methods and applications. Lab Chip 9:2470-476 CrossRef
    4. Bird RB, Stewart WE, Lightfoot EN (2002) Transport Phenomena, 2nd edn, chap 2. John Wiley & Sons, Inc
    5. Broboana D, Balan CM, Wohland T, Balan C (2011) Investigations of the unsteady diffusion process in microchannels. Chem Eng Sci 66(9):1962-972 CrossRef
    6. Ciceri D, Perera JM, Stevens GW (2011a) A study of molecular diffusion across a water/oil interface in a Y-Y shaped microfluidic device. Microfluid Nanofluid 11(5):593-00 CrossRef
    7. Ciceri D, Perera JM, Stevens GW (2011b) Extraction of Co(II) by di (2-ethylhexyl) phosphoric acid in a microfluidic device. In: International Solvent Extraction Conference (ISEC 2011) Santiago, Chile
    8. Ciceri D, Mason LR, Harvie DJE, Perera JM, Stevens GW (2012) Modelling of interfacial mass transfer in microfluidic solvent extraction: part II. Heterogeneous transport with reaction, Microfluid Nanofluid. doi:10.1007/s10404-012-1039-y
    9. Crank J (1975) Diffusion in a plane sheet. In: The Mathematics of Diffusion, 2nd edn, chap 3. Clarendon Press, Oxford
    10. Fick AE (1855) On liquid diffusion. Philos Mag 4(10):30-9
    11. Frank-Kamenetskii DA (1969) Diffusion and Heat Transfer in Chemical Kinetics, 2nd edn. Plenum Press, New York
    12. George PL, Borouchaki H (1998) Delaunay Triangulation and Meshing: Application to Finite Elements. Hermes
    13. Geuzaine C, Remacle JF (2009) Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities. Int J Numer Meth Eng 79(11):1309-331 CrossRef
    14. Harada M, Iwamoto K, Kitamori T, Sawada T (1993) Photothermal microscopy with excitation and probe beams coaxial under the microscope and its application to microparticle analysis. Anal Chem 65(20):2938-940 CrossRef
    15. Harvie DJE (2012) An implicit finite volume method for arbitrary transport equations. ANZIAM J 52:C1126–C1145
    16. Higbie R (1935) The rate of absorption of a pure gas into a still liquid during a short time of exposure. Trans AIChE 31:365
    17. Hotokezaka H, Tokeshi M, Harada M, Kitamori T, Ikeda Y (2005) Development of the innovative nuclide separation system for high-level radioactive waste using microchannel chip-extraction behavior of metal ions from aqueous phase to organic phase in microchannel. Prog Nucl Energ 47(1-):439-47 CrossRef
    18. Hotta T, Nii S, Yajima T, Kawaizumi F (2007) Mass tansfer characteristics of a microchannel device of split-flow type. Chem Eng Technol 30(2):208-13
    19. Ismagilov RF, Stroock AD, Kenis PJA, Whitesides G, Stone HA (2000) Experimental and theoretical scaling laws for transverse diffusive broadening in two-phase laminar flows in microchannels. Applied Physics Letters 76(17):2376-378 CrossRef
    20. Kamholz AE, Yager P (2001) Theoretical analysis of molecular diffusion in pressure-driven laminar flow in microfluidic channels. Biophys 80(1):155-60 CrossRef
    21. Kamholz AE, Weigl BH, Finlayson BA, Yager P (1999) Quantitative analysis of molecular interaction in a microfluidic channel: The T-sensor. Anal Chem 71:5340-347 CrossRef
    22. Kuban J, Dasgupta P, Berg PK (2003) Vertically stratified flows in microchannels. Computational simulations and applications to solvent extraction and ion exchange. Anal Chem 75(14):3549-556 CrossRef
    23. Lide DR (2009) CRC Handbook of Chemistry and Physics, 90th edn. CRC Press, Boca Raton
    24. McCulloch JK, Kelly ED, Perera JM, White LR, Stevens GW, Grieser F (1996) Direct spectroscopic measurement and theoretical modeling of the diffusion of a single species in a two-phase unstirred system. J Colloid and Interf Sci 184(2):399-05 CrossRef
    25. Minagawa T, Tokeshi M, Kitamori T (2001) Integration of a wet analysis system on a glass chip: Determination of Co (II) as 2-nitroso-1-napthol chelates by solvent extraction and Thermal Lens Microscopy. Lab Chip 1(1):72-5 CrossRef
    26. Nadim A, Borhan A, Haj-Hariri H (1996) Tangential stress and Marangoni effects at a fluid-fluid interface in a Hele-Shaw cell. J Colloid Interf Sci 181:159-64 CrossRef
    27. Nishi K, Perera JM, Misumi R, Kaminoyama M, Stevens GW (2010) Study of diffusion of Co(II) and Co(II)-DEHPA complex in a microfluidic device. J Chem Eng Jpn 43(4):342-48 CrossRef
    28. Nishi K, Perera JM, Misumi R, Kaminoyama M, Stevens GW (2011) Flow and diffusion behaviour as a function of viscosity in a double-Y-type microfluidic device. J Chem Eng Jpn 44(7):509-17 CrossRef
    29. Perry RH, Green DW (2007) Perry’s Chemical Engineers-Handbook, 8th edn. McGraw-Hill, New York
    30. Pohar A, Lakner M, Plazl I (2012) Parallel flow of immiscible liquids in a microreactor: modeling and experimental study. Microfluid Nanofluid 12:307-16 CrossRef
    31. Sato K, Tokeshi M, Sawada T, Kitamori T (2000) Molecular transport between two phases in a microchannel. Anal Sci 16:455-56 CrossRef
    32. Smirnova A, Mawatari K, Hibara A, Proskurnin MA, Kitamori T (2006) Micro-multiphase laminar flows for the extraction and detection of carbaryl derivative. Anal Chim Acta 558(1-):69-4 CrossRef
    33. Squires TM, Quake SR (2005) Microfluidics: Fluid physics at the nanoliter scale. Rev Mod Phys 77(3):977-026 CrossRef
    34. Surmeian M, Slyadnev MN, Hisamoto H, Hibara A, Uchiyama K, Kitamori T (2002) Three-layer flow membrane system on a microchip for investigation of molecular transport. Anal Chem 74(9):2014-020 CrossRef
    35. Tetala KKR, Swarts JW, Chen B, Janssen AEM, van Beek TA (2009) A three-phase microfluidic chip for rapid sample clean-up of alkaloids from plant extracts. Lab Chip 9(14):2085-092 CrossRef
    36. Tokeshi M, Minagawa T, Kitamori T (2000) Integration of a microextraction system on a glass chip: Ion-pair solvent extraction of Fe(II) with 4,7-diphenyl-1,10-phenanthrolinedisulfonic acid and tri- $n$ -octylmethylammonium chloride. Anal Chem 72(7):1711-714 CrossRef
    37. Truskey GA, Yuan F, Katz DF (2004) Transport Phenomena in Biological Systems, 1st edn, chap 7. Prentice Hall
    38. van Leeuwen M, Li X, Krommenhoek EE, Gardeniers H, Ottens M, van der Wielen LAM, Heijnen JJ, van Gulik WM (2009) Quantitative determination of glucose transfer between cocurrent laminar water streams in a H-shaped microchannel. Biotechnol Progr 25(6):1826-832
    39. van Male P, de Croon MHJM, Tiggelaar RM, van den Berg A, Schouten JC (2004) Heat and mass transfer in a square microchannel with asymmetric heating. Int J Heat Mass Tran 47(1):87-9 CrossRef
    40. Whitesides G (2006) The origins and the future of microfluidics. Nature 442:368-73 CrossRef
    41. Yaws CL (2003) Yaws-Handbook of Thermodynamic and Physical Properties of Chemical Compounds. Knovel
    42. ?nidar?i?-Plazl P, Plazl I (2007) Steroid extraction in a microchannel system—mathematical modelling and experiments. Lab Chip 7:883-89 CrossRef
  • 作者单位:Lachlan R. Mason (1)
    Davide Ciceri (1)
    Dalton J. E. Harvie (1)
    Jilska M. Perera (1)
    Geoffrey W. Stevens (1)

    1. Department of Chemical and Biomolecular Engineering, The University of Melbourne, Melbourne, VIC, 3010, Australia
  • ISSN:1613-4990
文摘
An investigation of molecular diffusion of solutes across water/oil interfaces in a Y-Y-shaped microchannel with an integrated guide structure is presented. Finite volume numerical simulations were compared with experimental literature data. Analytical approaches including an infinite composite medium model, phase-specific mass transfer coefficient models, and a static transfer cell model were also assessed. An increase in accuracy for the mass transfer coefficient models was achieved by using local coefficients as opposed to length-averaged expressions. The static transfer cell model was shown to improve when based on the interfacial contact time, as opposed to the organic phase residence time. The results presented in this work have immediate application to the determination of kinetic rate constants in reactive mass transfer systems, as considered in Part?II of this study (Ciceri et al. Microfluid Nanofluid, 2012).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700