Modelling of interfacial mass transfer in microfluidic solvent extraction: part II. Heterogeneous transport with chemical reaction
详细信息    查看全文
  • 作者:Davide Ciceri (1)
    Lachlan R. Mason (1)
    Dalton J. E. Harvie (1)
    Jilska M. Perera (1)
    Geoffrey W. Stevens (1)
  • 关键词:Finite volume simulation ; Hydrometallurgy ; Kinetics ; Liquid/liquid interface ; Microfluidics ; Solvent extraction
  • 刊名:Microfluidics and Nanofluidics
  • 出版年:2013
  • 出版时间:2 - January 2013
  • 年:2013
  • 卷:14
  • 期:1
  • 页码:213-224
  • 全文大小:521KB
  • 参考文献:1. Albery WJ, Burke JF, Leffler EB, Hadgraft J (1976) Interfacial transfer studied with a rotating diffusion cell. J Chem Soc Faraday Trans 1(72):1626-618
    2. Aota A, Mawatari K, Kitamori R (2009) Parallel multiphase microflows: fundamental physics, stabilization methods and applications. Lab Chip 9:2470-476 CrossRef
    3. Beneitez P, Ortiz SJ, Ortega J (1985) Influence of the acetate medium on the extraction of cobalt (II) by di-2-ethylhexyl phosphoric acid. Solvent Extr Ion Exch 3(5):667-78 CrossRef
    4. Biswas RK, Banu RA, Islam MN (2003) Some physico-chemical properties of D2EHPA. Part 2. Distribution, dimerization and acid dissociation constants in / n-hexane system, interfacial adsorption and excess properties. Hydrometallurgy 69(1):157-68 CrossRef
    5. Brisk ML, McManamey WJ (1969) Liquid extraction of metals from sulphate solutions by alkylphosphoric acids. I. Equilibrium distributions of copper, cobalt and nickel with di-(2-ethyl hexyl) phosphoric acid. J Appl Chem 19(4):103-08
    6. Cianetti C, Danesi PR (1983) Kinetics and mechanism of the interfacial mass transfer of Zn in the system. phosphoric acid / n-dodecane—KNO3, water. Solvent Extr Ion Exch 1(1):9-6 CrossRef
    7. Ciceri D, Perera JM, Stevens GW (2011a) A study of molecular diffusion across a water/oil interface in a Y-Y shaped microfluidic device. Microfluid Nanofluid 11(5):593-00 CrossRef
    8. Ciceri D, Perera JM, Stevens GW (2011b) Extraction of Co(II) by di (2-ethylhexyl) phosphoric acid in a microfluidic device. In: International Solvent Extraction Conference (ISEC, 2011) Santiago, Chile
    9. Cotton FA, Wilkinson G (1988) Advanced inorganic chemistry, 5th edn. John Wiley & Sons, Inc.
    10. Danesi PR, Vandegrift GF (1981) Activity coefficients of bis (2-ethylhexyl) phosphoric acid in / n-dodecane. Inorg Nucl Chem Lett 17:109-15 CrossRef
    11. Danesi PR, Reichley-Yinger L, Mason G, Kaplan L, Horwltz EP, Diamond H (1985) Selectivity-structure trends in the extraction of Co(II) and Ni(II) by dialkyl phosphoric, alkylphosphonic, and dialkylphosphinic acids. Solvent Extr Ion Exch 3(4):435-52 CrossRef
    12. Dreisinger DB, Cooper WC (1986) The kinetics of cobalt and nickel extraction using HEHEHP. Solvent Extr Ion Exch 4:317-44 CrossRef
    13. Dreisinger DB, Cooper WC (1989) The kinetics of zinc, cobalt and nickel extraction in the D2EHPA–heptane–HC104 system using the rotating diffusion cell technique. Solvent Extr Ion Exch 7(2):335-60 CrossRef
    14. Eigen M (1963) Fast elementary steps in chemical reaction mechanisms. Pure Appl Chem 6:97-15 CrossRef
    15. Flett DS (2005) Solvent extraction in hydrometallurgy: the role of organophosphorus extractants. J Organomet Chem 690(10):2426-438 CrossRef
    16. Golding JA, Pushparajah, (1985) Mass transfer characteristics of cobalt and nickel in di(2-ethylhexyl)phosphoric acid under steady-state extraction conditions. Hydrometallurgy 14(3):295-07
    17. Golding JA, Fouda SA, Saleh V (1977) Equilibrium and mass transfer for the separation of nickel and cobalt in di(2-ethylhexyl) phosphoric acid. In: International Solvent Extraction Conference (ISEC 1977), Toronto, Canada, pp. 227-32
    18. Golding JM, Saleh VM (1980) Mass transfer coefficient in di(2-ethylhexyl)phosphoric acid for cobalt and nickel. In: International Solvent Extraction Conference (ISEC 1980), vol 1. University of Liege, Belgium, pp. 80-94
    19. Grimm R, Kola?ík Z (1974) Acidic organophosphorus extractants-XIX: Extraction of Cu(II), Ni(II), Zn(II) and Cd(II) by di (2-ethylhexyl) phosphoric acid. J Inorg Nucl Chem 36(1):189-92 CrossRef
    20. Harvie DJE (2012) An implicit finite volume method for arbitrary transport equations. ANZIAM J 52:C1126–C1145
    21. Hotokezaka H, Tokeshi M, Harada M, Kitamori T, Ikeda Y (2005) Development of the innovative nuclide separation system for high-level radioactive waste using microchannel chip-extraction behavior of metal ions from aqueous phase to organic phase in microchannel. Prog Nucl Energ 47(1-):439-47 CrossRef
    22. Huang TC, Tsai TH (1990) Extraction equilibrium of cobalt (II) from sulphate solutions by di (2-ethylhexyl) phosphoric acid dissolved in kerosene. Polyhedron 9(9):1147-153 CrossRef
    23. Hughes M, Zhu T (1985) Rates of extraction of cobalt from an aqueous solution to D2EHPA in a growing drop cell. Hydrometallurgy 13:249-64 CrossRef
    24. Juang RS, Jiang JD (1994) Rate-controlling mechanism of cobalt transport through supported liquid membranes containing di(2-ethylhexyl) phosphoric acid. Separ Sci Technol 29(2):223-37 CrossRef
    25. Kim HB, Ueno K, Chiba M, Kogi O, Kitamura N (2000) Spatially-resolved fluorescence spectroscopic study on liquid/liquid extraction processes in polymer microchannels. Anal Sci 16(8):871-76 CrossRef
    26. Kola?ík Z, Grimm R (1976) Acidic organophosphorus extractants–XXIV: the polymerization behaviour of Cu(II), Cd(II), Zn(II) and Co(II) complexes of di(2-ethylhexyl) phosphoric acid in fully loaded organic phases. J Inorg Nucl Chem 38(9):1721-727 CrossRef
    27. Komasawa I, Otake T (1983) Kinetic studies of the extraction of divalent metals from nitrate media with bis(2-ethylhexyl)phosphoric acid. Ind Eng Chem Fund 22(4):367-71 CrossRef
    28. Komasawa I, Otake T, Higaki Y (1981) Equilibrium studies of the extraction of divalent metals from nitrate media with di-(2ethylhexyl) phosphoric acid. J Inorg Nucl Chem 43(12):3351-356 CrossRef
    29. Kuban J, Dasgupta P, Berg PK (2003) Vertically stratified flows in microchannels. Computational simulations and applications to solvent extraction and ion exchange. Anal Chem 75(14):3549-556 CrossRef
    30. Lewis JB (1954a) The mechanism of mass transfer of solutes across liquid–liquid interfaces. The determination of individual transfer coefficients for binary systems. Chem Eng Sci 3(6):248-59 CrossRef
    31. Lewis JB (1954b) The mechanism of mass transfer of solutes across liquid-liquid interfaces. 2. The transfer of organic solutes between solvent and aqueous phases. Chem Eng Sci 3(6):260-78 CrossRef
    32. Lo TC, Baird MHI, Hanson C (1983) Handbook of solvent extraction. Wiley, New York
    33. MacLean D, Dreisinger D (1993) The kinetics of zinc extraction in the di(2-ethylhexyl) phosphoric acid, / n-heptane-Zn(ClO4)2, HClO4, H2O system using the rotating diffusion cell. Hydrometallurgy 33(1-):107-36 CrossRef
    34. Maruyama T, Matsushita H, Uchida J, Kubota F, Kamiya N, Goto M (2004) Liquid membrane operations in a microfluidic device for selective separation of metal ions. Anal Chem 76:4495-500 CrossRef
    35. Mason LR, Ciceri D, Harvie DJE, Perera JM, Stevens GW (2012) Modelling of interfacial mass transfer in microfluidic solvent extraction. Part I. Heterogeneous transport. Microfluid Nanofluid. doi:10.1007/s10404-012-1038-z
    36. McCulloch JK, Perera JM, Kelly ED, White LR, Stevens GW, Grieser F (1996) A kinetic study of copper ion extraction by Kelex 100 at a heptane–water interface. J Colloid Interf Sci 184(2):406-13 CrossRef
    37. Morita K, Hagiawara T, Hirayama N, Imura H (2010) Extraction of Cu(II) with dioctyldithiocarbamate and a kinetic study of the extraction using a two-phase microflow system. Solvent Extr Res Dev 17:209-14
    38. Nagai H, Miwa N, Segawa M, Wakida S, Chayama K (2009) Quantification of Ag(I) and kinetic analysis using ion-pair extraction across a liquid/liquid interface in a laminar flow by fluorescence microscopy. J Appl Phys 105(102):015
    39. Nichols KP, Pompano RR, Li L, Gelis AV, Ismagilov RF (2011) Toward mechanistic understanding of nuclear reprocessing chemistries by quantifying lanthanide solvent extraction kinetics via microfluidics with constant interfacial area and rapid mixing. JACS 133(39):15,721-5,729. CrossRef
    40. Nishi K, Perera JM, Misumi R, Kaminoyama M, Stevens GW (2010) Study of diffusion of Co(II) and Co(II)-DEHPA complex in a microfluidic device. J Chem Eng Jpn 43(4):342-48 CrossRef
    41. Nishi K, Perera JM, Misumi R, Kaminoyama M, Stevens GW (2011) Flow and diffusion behaviour as a function of viscosity in a double-Y-type microfluidic device. J Chem Eng Jpn 44(7):509-17 CrossRef
    42. Perera JM, Stevens GW (2009) Spectroscopic studies of molecular interaction at the liquid-liquid interface. Anal Bioanal Chem 395(4):1019-032 CrossRef
    43. Perry RH, Green DW (2007) Perry’s chemical engineers-handbook, 8th edn. McGraw-Hill, New York
    44. Priest C, Zhou J, Sedev R, Ralston J, Aota A, Mawatari K, Kitamori T (2011) Microfluidic extraction of copper from particle-laden solutions. Int J Miner Process 98(3-):168-73 CrossRef
    45. Puigdomenech I (2009) MEDUSA (Make Equilibrium Diagrams Using Sophisticated Algorithms) software, Inorganic Chemistry, Royal Institute of Technology, Stockholm. http://www.kemi.kth.se/medusa
    46. Rydberg J (1969) Solvent extraction studies by the AKUFVE method. Part 1. Principle and general problems. Acta Chem Scand 23:647-59
    47. Sella C, Bauer D (1988) Diphasic acido-basic properties of organophosphorus acids. Solvent Extr Ion Exch 6(5):819-33 CrossRef
    48. Simonin JP (1996) A new version of the rotating stabilized cell technique for the study of extraction kinetics at a liquid-liquid boundary. Solvent Extr Ion Exch 14(5):889-96 CrossRef
    49. Simonin JP, Turq P, Musikas C (1991) Rotating stabilised cell: a new tool for the investigation of interfacial extraction kinetics between liquid phases. J Chem Soc Faraday T 87:2715-721 CrossRef
    50. Simonin JP, Hendrawan H, Dardoize F, Clodic G (2003) Study of salt effects on the kinetics of extraction of cobalt(II) and zinc(II) at trace level by D2EHPA in / n-dodecane. Hydrometallurgy 69(1-):23-8 CrossRef
    51. Stevens GW, Perera JM, Grieser F (2001) Interfacial aspects of metal ion extraction in liquid-liquid systems. Rev Chem Eng 17(2):87-10 CrossRef
    52. Tokeshi M, Minagawa T, Kitamori T (2000) Integration of a microextraction system on a glass chip: Ion-pair solvent extraction of Fe(II) with 4,7-diphenyl-1,10-phenanthrolinedisulfonic acid and tri- / n-octylmethylammonium chloride. Anal Chem 72(7):1711-714 CrossRef
    53. Van de Voorde I, Pinoy L, Courtijn E, Verpoort F (2005) Influence of acetate ions and the role of the diluents on the extraction of copper (II), nickel (II), cobalt (II), magnesium (II) and iron (II, III) with different types of extractants. Hydrometallurgy 78(1-):92-06 CrossRef
    54. Van de Voorde I, Pinoy L, Courtijn E, Verpoort F (2006) Equilibrium studies of nickel(II), copper(II), and cobalt(II) extraction with aloxime 800, D2EHPA, and cyanex reagents. Solvent Extr Ion Exch 24(6):893-14 CrossRef
    55. Warren DB, Grieser F, Perera JM, Stevens GW (2006) Effect of surfactants on the kinetics of nickel(II) extraction by 2-hydroxy-5-nonylacetophenone oxime (LIX 84) in an / n-heptane/water system. Langmuir 22(1):213-18 CrossRef
    56. Wasan DT, Gu ZM, Li NN (1984) Separation of metal ions by ligand-accelerated transfer through liquid surfactant membranes. Faraday Discuss Chem Soc 77:67-4 CrossRef
    57. Wilke CR, Chang P (1955) Correlation of diffusion coefficients in dilute solutions. AIChE J 1(2):264-70 CrossRef
    58. Yaws CL (2003) Yaws-Handbook of Thermodynamic and Physical Properties of Chemical Compounds. Knovel
    59. Yu ZJ, Ibrahim TH, Neuman RD (1998) Aggregation behavior of cobalt(II), nickel(II), and copper(II) bis(2-ethylhexyl)phosphate complexes in / n-heptane. Solvent Extr Ion Exch 16(6):1437-463 CrossRef
    60. ?nidar?i?-Plazl P, Plazl I (2009) Modelling and experimental studies on lipase-catalyzed isoamyl acetate synthesis in a microreactor. Process Biochem 44:1115-121 CrossRef
  • 作者单位:Davide Ciceri (1)
    Lachlan R. Mason (1)
    Dalton J. E. Harvie (1)
    Jilska M. Perera (1)
    Geoffrey W. Stevens (1)

    1. Department of Chemical and Biomolecular Engineering, The University of Melbourne, Melbourne, VIC, 3010, Australia
  • ISSN:1613-4990
文摘
The use of a microfluidic device in determining the extraction kinetics of CoII ions by di-(2-ethylhexyl) phosphoric acid (DEHPA) was demonstrated. Experimental data obtained using a Y-Y-shaped microchannel were modelled using a finite volume method. The contributions of diffusion and reaction transport resistances to the overall rate of mass transfer were obtained. A diffusion-controlled transfer assumption could not account for the experimental data, confirming that transport occurs under a mixed reaction–diffusion resistance regime. The reaction rate constant was determined to be $(2.4 \pm 0.6) \times 10^{-10}$ ?m/s, in good agreement with corresponding Lewis cell measurements from the literature.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700