Sensory feedback in a bump attractor model of path integration
详细信息    查看全文
  • 作者:Daniel B. Poll ; Khanh Nguyen…
  • 关键词:Neural field ; Sensory feedback ; Spatial navigation ; Stochastic differential equation
  • 刊名:Journal of Computational Neuroscience
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:40
  • 期:2
  • 页码:137-155
  • 全文大小:3,780 KB
  • 参考文献:Aikath, D., Weible, A.P., Rowland, D.C., & Kentros, C.G. (2014). Role of self-generated odor cues in contextual representation. Hippocampus, 24(8), 1039–51.CrossRef PubMed PubMedCentral
    Amari, S. (1977). Dynamics of pattern formation in lateral-inhibition type neural fields. Biological Cybernetics, 27(2), 77–87.CrossRef PubMed
    Battaglia, F.P., Sutherland, G.R., & McNaughton, B.L. (2004). Local sensory cues and place cell directionality: additional evidence of prospective coding in the hippocampus. The Journal of Neuroscience, 24(19), 4541–4550.CrossRef PubMed
    Bressloff, P.C. (2001). Traveling fronts and wave propagation failure in an inhomogeneous neural network. Physica D: Nonlinear Phenomena, 155(1), 83–100.CrossRef
    Bressloff, P.C. (2009). Stochastic neural field theory and the system-size expansion. SIAM Journal on Applied Mathematics, 70(5), 1488–1521.CrossRef
    Bressloff, P.C. (2012). Spatiotemporal dynamics of continuum neural fields. Journal of Physics A: Mathematical and Theoretical, 45(3), 033,001.CrossRef
    Bressloff, P.C., & Kilpatrick, Z.P. (2015). Nonlinear langevin equations for wandering patterns in stochastic neural fields. SIAM Journal on Applied Dynamical Systems, 14(1), 305–334.CrossRef
    Bressloff, P.C., & Webber, M.A. (2012). Front propagation in stochastic neural fields. SIAM Journal on Applied Dynamical Systems, 11(2), 708–740.CrossRef
    Brody, C.D., Romo, R., & Kepecs, A. (2003). Basic mechanisms for graded persistent activity: discrete attractors, continuous attractors, and dynamic representations. Current opinion in neurobiology, 13(2), 204–211.CrossRef PubMed
    Burak, Y., & Fiete, I.R. (2009). Accurate path integration in continuous attractor network models of grid cells. PLoS Computational Biology, 5(2), e1000,291.CrossRef
    Burak, Y., & Fiete, I.R. (2012). Fundamental limits on persistent activity in networks of noisy neurons. Proceedings of the National Academy of Sciences of the United States of America, 109(43), 17,645–50. doi:10.​1073/​pnas.​1117386109 .CrossRef
    Chow, C.C., & White, J.A. (1996). Spontaneous action potentials due to channel fluctuations. Biophysical journal, 71(6), 3013.CrossRef PubMed PubMedCentral
    Cochran, W.W., Mouritsen, H., & Wikelski, M. (2004). Migrating songbirds recalibrate their magnetic compass daily from twilight cues. Science, 304(5669), 405–408.CrossRef PubMed
    Collett, T.S., & Graham, P. (2004). Animal navigation: path integration, visual landmarks and cognitive maps. Current Biology, 14(12), R475–R477.CrossRef PubMed
    Compte, A., Brunel, N., Goldman-Rakic, P.S., & Wang, X.J. (2000). Synaptic mechanisms and network dynamics underlying spatial working memory in a cortical network model. Cerebral Cortex, 10(9), 910–923.CrossRef PubMed
    Coombes, S., & Laing, C. (2011). Pulsating fronts in periodically modulated neural field models. Physical Review E, 83(1), 011, 912.CrossRef
    Deneve, S., Latham, P.E., & Pouget, A. (1999). Reading population codes: a neural implementation of ideal observers. Nature neuroscience, 2(8), 740–745.CrossRef PubMed
    Deshmukh, S.S., & Knierim, J.J. (2011). Representation of non-spatial and spatial information in the lateral entorhinal cortex. Frontiers in Behavioral Neuroscience, 5, 69.CrossRef PubMed PubMedCentral
    Ermentrout, B. (1998). Neural networks as spatio-temporal pattern-forming systems. Reports on progress in physics, 61(4), 353.CrossRef
    Etienne, A.S., Maurer, R., & Séguinot, V. (1996). Path integration in mammals and its interaction with visual landmarks. The Journal of Experimental Biology, 199(1), 201–209.PubMed
    Faisal, A.A., Selen, L.P.J., & Wolpert, D.M. (2008). Noise in the nervous system. Nature Reviews Neuroscience, 9(4), 292–303. doi:10.​1038/​nrn2258 .CrossRef PubMed PubMedCentral
    Gardiner, C.W. (2004). Handbook of stochastic methods for physics, chemistry, and the natural sciences, 3rd edn. Berlin: Springer-Verlag.CrossRef
    Geva-Sagiv, M., Las, L., Yovel, Y., & Ulanovsky, N. (2015). Spatial cognition in bats and rats: from sensory acquisition to multiscale maps and navigation. Nature Reviews Neuroscience, 16(2), 94–108.CrossRef PubMed
    Hansel, D., & Mato, G. (2013). Short-term plasticity explains irregular persistent activity in working memory tasks. The Journal of Neuroscience, 33(1), 133–149.CrossRef PubMed
    Hardcastle, K., Ganguli, S., & Giocomo, L.M. (2015). Environmental boundaries as an error correction mechanism for grid cells. Neuron, 86(3), 827–39.CrossRef PubMed
    Hasselmo, M.E., & Brandon, M.P. (2012). A model combining oscillations and attractor dynamics for generation of grid cell firing. Front Neural Circuits, 6, 30.CrossRef PubMed PubMedCentral
    Itskov, V., Hansel, D., & Tsodyks, M. (2011). Short-term facilitation may stabilize parametric working memory trace. Frontiers in computational neuroscience, 5.
    Jezek, K., Henriksen, E.J., Treves, A., Moser, E.I., & Moser, M.B. (2011). Theta-paced flickering between place-cell maps in the hippocampus. Nature, 478(7368), 246–249.CrossRef PubMed
    Kilpatrick, Z.P. (2013). Short term synaptic depression improves information transfer in perceptual multistability. Frontiers in Computational Neuroscience, 7, 85.PubMed PubMedCentral
    Kilpatrick, Z.P., & Ermentrout, B. (2013). Wandering bumps in stochastic neural fields. SIAM Journal on Applied Dynamical Systems, 12(1), 61–94.CrossRef
    Kilpatrick, Z.P., Folias, S.E., & Bressloff, P.C. (2008). Traveling pulses and wave propagation failure in inhomogeneous neural media. SIAM Journal on Applied Dynamical Systems, 7(1), 161–185.CrossRef
    Kilpatrick, Z.P., Ermentrout, B., & Doiron, B. (2013). Optimizing working memory with heterogeneity of recurrent cortical excitation. The Journal of Neuroscience, 33(48), 18,999–19,011.CrossRef
    Knierim, J.J., Kudrimoti, H.S., & McNaughton, B.L. (1995). Place cells, head direction cells, and the learning of landmark stability. The Journal of Neuroscience, 15(3), 1648–1659.PubMed
    Laing, C.R., & Chow, C.C. (2001). Stationary bumps in networks of spiking neurons. Neural Computation, 13(7), 1473–1494.CrossRef PubMed
    McNaughton, B., Chen, L., & Markus, E. (1991). Dead reckoning, landmark learning, and the sense of direction: a neurophysiological and computational hypothesis. Journal of Cognitive Neuroscience, 3(2), 190–202.CrossRef PubMed
    McNaughton, B.L., Battaglia, F.P., Jensen, O., Moser, E.I., & Moser, M.B. (2006). Path integration and the neural basis of the ’cognitive map’. Nature Reviews Neuroscience, 7(8), 663–78. doi:10.​1038/​nrn1932 .CrossRef PubMed
    O’Keefe, J., & Burgess, N. (1996). Geometric determinants of the place fields of hippocampal neurons. Nature, 381(6581), 425–8.CrossRef PubMed
    Panja, D. (2004). Effects of fluctuations on propagating fronts. Physics Reports, 393(2), 87–174.CrossRef
    Pfeiffer, B.E., & Foster, D.J. (2015). Autoassociative dynamics in the generation of sequences of hippocampal place cells. Science, 349(6244), 180–183.CrossRef PubMed
    Renart, A., Song, P., & Wang, X.J. (2003). Robust spatial working memory through homeostatic synaptic scaling in heterogeneous cortical networks. Neuron, 38(3), 473–485.CrossRef PubMed
    Ribrault, C., Sekimoto, K., & Triller, A. (2011). From the stochasticity of molecular processes to the variability of synaptic transmission. Nature Reviews Neuroscience, 12(7), 375–387.CrossRef PubMed
    Sagués, F., Sancho, J.M., & García-Ojalvo, J. (2007). Spatiotemporal order out of noise. Reviews of Modern Physics, 79(3), 829.CrossRef
    Samsonovich, A., & McNaughton, B.L. (1997). Path integration and cognitive mapping in a continuous attractor neural network model. Journal of Neuroscience, 17(15), 5900–20.PubMed
    Save, E., Nerad, L., & Poucet, B. (2000). Contribution of multiple sensory information to place field stability in hippocampal place cells. Hippocampus, 10, 64–76.CrossRef PubMed
    Shpiro, A., Curtu, R., Rinzel, J., & Rubin, N. (2007). Dynamical characteristics common to neuronal competition models. Journal of Neurophysiology, 97(1), 462–73. doi:10.​1152/​jn.​00604.​2006 .CrossRef PubMed PubMedCentral
    Slotine, J., & Li, W. (1991). Applied Nonlinear Control: Prentice Hall.
    Solstad, T., Boccara, C.N., Kropff, E., Moser, M.B., & Moser, E.I. (2008). Representation of geometric borders in the entorhinal cortex. Science, 322(5909), 1865–8.CrossRef PubMed
    Sreenivasan, S., & Fiete, I. (2011). Grid cells generate an analog error-correcting code for singularly precise neural computation. Nature neuroscience, 14(10), 1330–1337.CrossRef PubMed
    Tsao, A., Moser, M.B., & Moser, E.I. (2013). Traces of experience in the lateral entorhinal cortex. Current Biology, 23(5), 399–405.CrossRef PubMed
    Ulanovsky, N., & Moss, C.F. (2011). Dynamics of hippocampal spatial representation in echolocating bats. Hippocampus, 21(2), 150–61.CrossRef PubMed PubMedCentral
    Valerio, S., & Taube, J.S. (2012). Path integration: how the head direction signal maintains and corrects spatial orientation. Nature neuroscience, 15(10), 1445–1453.CrossRef PubMed PubMedCentral
    Wang, X.J. (1999). Synaptic basis of cortical persistent activity: the importance of nmda receptors to working memory. The Journal of Neuroscience, 19(21), 9587–9603.PubMed
    Welday, A.W., Shlifer, I.G., Bloom, M.L., Zhang, K., & BH, T. (2011). Cosine directional tuning of theta cell burst frequencies: Evidence for spatial coding by oscillatory interference. Journal of Neuroscience, 16, 16,157–16,176.CrossRef
    Wills, T.J., Lever, C., Cacucci, F., Burgess, N., & O’Keefe, J. (2005). Attractor dynamics in the hippocampal representation of the local environment. Science, 308, 873–876.CrossRef PubMed PubMedCentral
    Wilson, H.R., & Cowan, J.D. (1973). A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue. Kybernetik, 13(2), 55–80.CrossRef PubMed
    Wu, L.Q., & Dickman, J.D. (2012). Neural correlates of a magnetic sense. Science, 336(6084), 1054–1057.CrossRef PubMed
    Zhang, K. (1996). Representation of spatial orientation by the intrinsic dynamics of the head-direction cell ensemble: a theory. Journal of Neuroscience, 16(6), 2112–26.PubMed
    Zhang, S., Schönfeld, F., Wiskott, L., & Manahan-Vaughan, D. (2014). Spatial representations of place cells in darkness are supported by path integration and border information. Frontiers in Behavioral Neuroscience, 8, 222.PubMed PubMedCentral
  • 作者单位:Daniel B. Poll (1)
    Khanh Nguyen (1)
    Zachary P. Kilpatrick (1)

    1. Department of Mathematics, University of Houston, Houston, TX, 77204, USA
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Biomedicine
    Neurosciences
    Neurology
    Human Genetics
    Theory of Computation
  • 出版者:Springer Netherlands
  • ISSN:1573-6873
文摘
Mammalian spatial navigation systems utilize several different sensory information channels. This information is converted into a neural code that represents the animal’s current position in space by engaging place cell, grid cell, and head direction cell networks. In particular, sensory landmark (allothetic) cues can be utilized in concert with an animal’s knowledge of its own velocity (idiothetic) cues to generate a more accurate representation of position than path integration provides on its own (Battaglia et al. The Journal of Neuroscience 24(19):4541–4550 (2004)). We develop a computational model that merges path integration with feedback from external sensory cues that provide a reliable representation of spatial position along an annular track. Starting with a continuous bump attractor model, we explore the impact of synaptic spatial asymmetry and heterogeneity, which disrupt the position code of the path integration process. We use asymptotic analysis to reduce the bump attractor model to a single scalar equation whose potential represents the impact of asymmetry and heterogeneity. Such imperfections cause errors to build up when the network performs path integration, but these errors can be corrected by an external control signal representing the effects of sensory cues. We demonstrate that there is an optimal strength and decay rate of the control signal when cues appear either periodically or randomly. A similar analysis is performed when errors in path integration arise from dynamic noise fluctuations. Again, there is an optimal strength and decay of discrete control that minimizes the path integration error.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700