Ecological importance of soil bacterivores for ecosystem functions
详细信息    查看全文
  • 作者:Jean Trap ; Michael Bonkowski ; Claude Plassard ; Cécile Villenave…
  • 关键词:Bacterivores ; Protists ; nematodes ; Microbial loop ; Plant growth ; Plant nutrition ; Ecological stoichiometry ; Meta ; analysis
  • 刊名:Plant and Soil
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:398
  • 期:1-2
  • 页码:1-24
  • 全文大小:805 KB
  • 参考文献:Adl SM, Simpson AGB, Farmer MA, Andersen RA, Anderson OR, Barta JR, Bowser SS, Brugerolle G, Fensome RA, Fredericq S, James TY, Karpov S, Kugrens P, Krug J, Lane CE, Lewis LA, Lodge J, Lynn DH, Mann DG, McCourt RM, Mendoza L, Moestrup Ø, Mozley-Standridge SE, Nerad TA, Shearer CA, Smirnov AV, Spiegel FW, Taylor MFJR (2005) The new higher level classification of eukaryotes with emphasis on the taxonomy of protists. J Eucaryot Microbiol 52:399–451CrossRef
    Adl SM, Simpson AG, Lane CE, Lukeš J, Bass D, Bowser SS, Brown M, Burki F, Dunthorn M, Hampl V, Heiss A, Hoppenrath M, Lara E, leGall L, Lynn DH, McManus H, Mitchell EAD, Mozley-Stanridge SE, Wegener Parfrey L, Pawlowski J, Rueckert S, Shadwick L, Schoch C, Smirnov A, Spiegel FW (2012) The revised classification of eukaryotes. J Eucaryot Microbiol 59:429–514CrossRef
    Ågren GI (2004) The C:N:P stoichiomestry of autotrophs - theory and observations. Ecol Lett 7:185–191CrossRef
    Ågren GI (2008) Stoichiometry and nutrition of plant growth in natural communities. Annu Rev Ecol Syst 39:153–170CrossRef
    Alphei J, Bonkowski M, Scheu S (1996) Protozoa, Nematoda and Lumbricidae in the rhizosphere of Hordelymus europeaus (Poaceae): faunal interactions, response of microorganisms and effects on plant growth. Oecologia 106:111–126CrossRef
    Anderson RV, Coleman DC (1981) Population development and interactions between 2 species of bacteriophagic nematodes. Nematologica 27:6–19CrossRef
    Anderson RV, Elliott ET, McClellan JF, Coleman DC, Cole CV, Hunt HW (1978) Trophic interactions in soils as they affect energy and nutrient dynamics. 3. Biotic interactions of bacteria, amebas, and nematodes. Microb Ecol 4:361–371CrossRef
    Anderson R, Gould W, Woods L, Cambardella C, Ingham R, Coleman D (1983) Organic and inorganic nitrogenous losses by microbivorous nematodes in soil. Oikos 40:75–80CrossRef
    Baath E, Lohm U, Lundgren B, Rosswall T, Soderstrom B, Sohlenius B (1981) Impact of microbial-feeding animals on total soil activity and nitrogen dynamics: a soil microcosm experiment. Oikos 37:257–264CrossRef
    Bardgett RD, Cook R, Yeates GW, Denton CS (1999) The influence of nematodes on below-ground processes in grassland ecosystems. Plant Soil 212:23–33CrossRef
    Barrios E (2007) Soil biota, ecosystem services and land productivity. Ecol Econ 64:269–285CrossRef
    Benizri E, Dedourge O, Dibattista-Leboeuf C, Piutti S, Nguyen C, Guckert A (2002) Effect of maize rhizodeposits on soil microbial community structure. Appl Soil Ecol 21:261–265CrossRef
    Bjornlund L, Rønn R (2008) ‘David and Goliath’ of the soil food web - Flagellates that kill nematodes. Soil Biol Biochem 40:2032–2039CrossRef
    Bjornlund L, Liu MQ, Rønn R, Christensen S, Ekelund F (2012) Nematodes and protozoa affect plants differently, depending on soil nutrient status. Eur J Soil Biol 50:28–31CrossRef
    Blanc C, Sy M, Djigal D, Brauman A, Normand P, Villenave C (2006) Nutrition on bacteria by bacterial-feeding nematodes and consequences on the structure of soil bacterial community. Eur J Soil Biol 42:S70–S78CrossRef
    Bonkowski M (2004) Protozoa and plant growth: the microbial loop in soil revisited. New Phytol 162:617–631CrossRef
    Bonkowski M, Clarholm M (2012) Stimulation of plant growth through interactions of bacteria and protozoa: testing the auxiliary microbial loop hypothesis. Acta Protozool 51:237–247
    Bonkowski M, Schaefer M (1997) Interactions between earthworms and soil protozoa: a trophic component in the soil food web. Soil Biol Biochem 29:499–502CrossRef
    Bonkowski M, Griffiths B, Scrimgeour C (2000) Substrate heterogeneity and microfauna in soil organic ‘hotspots’ as determinants of nitrogen capture and growth of ryegrass. Appl Soil 14:37–53CrossRef
    Bonkowski M, Geoghegan IE, Birch ANE, Griffiths BS (2001a) Effects of soil decomposer invertebrates (protozoa and earthworms) on an above-ground phytophagous insect (cereal aphid) mediated through changes in the host plant. Oikos 95:441–450CrossRef
    Bonkowski M, Jentschke G, Scheu S (2001b) Contrasting effects of microbial partners in the rhizosphere: interactions between Norway Spruce seedlings (Picea abies Karst.), mycorrhiza (Paxillus involutus (Batsch) Fr.) and naked amoebae (protozoa). Appl Soil 18:193–204CrossRef
    Bonkowski M, Villenave C, Griffiths B (2009) Rhizosphere fauna: the functional and structural diversity of intimate interactions of soil fauna with plant roots. Plant Soil 321:213–233CrossRef
    Bonkowski M, Koller R, Jousset AJF (2011) How protozoa structure microbial communities in the rhizosphere of plants. J Phycol 47:S7
    Borkott H (1989) Elementgehalte (C, N, P, K) wirbelloser Bodentiere. Z Pflanzenernähr Bodenkd 152:77–80CrossRef
    Bossio DA, Girvan MS, Verchot L, Bullimore J, Borelli T, Albrecht A, Scow KM, Ball AS, Pretty JN, Osborn AM (2005) Soil microbial community response to land use change in an agricultural landscape of western Kenya. Microb Ecol 49:50–62PubMed CrossRef
    Brown LK, George TS, Barrett GE, Hubbard SF, White PJ (2013) Interactions between root hair length and arbuscular mycorrhizal colonisation in phosphorus deficient barley (Hordeum vulgare). Plant Soil 372:195–205CrossRef
    Brussaard L (1997) Biodiversity and ecosystem functioning in soil. Ambio 26:563–570
    Brussaard L, De Ruiter PC, Brown GG (2007) Soil biodiversity for agricultural sustainability. Agr Ecosyst Environ 121:233–244CrossRef
    Cappellazzo G, Lanfranco L, Fitz M, Wipf D, Bonfante P (2008) Characterization of an amino acid permease from the endomycorrhizal fungus Glomus mosseae. Plant Physiol 147:429–437PubMed PubMedCentral CrossRef
    Chen X, Liu M, Hu F, Mao X, Li H (2007) Contributions of soil micro-fauna (protozoa and nematodes) to rhizosphere ecological functions. Acta Ecol Sin 27:3132–3143CrossRef
    Cheng YH, Jiang Y, Griffiths BS, Li DM, Hu F, Li HX (2011) Stimulatory effects of bacterial-feeding nematodes on plant growth vary with nematode species. Nematology 13:369–372CrossRef
    Clarholm M (1985a) Interactions of bacteria, protozoa and plants leading to mineralization of soil-nitrogen. Soil Biol Biochem 17:181–187CrossRef
    Clarholm M (1985b) Possible roles for roots, bacteria, protozoa, and fungi in supplying nitrogen to plants. In: Fitter AH (ed) Ecological interactions in soil. Blackwell Scient. Publ., pp 355–365
    Cleveland CC, Liptzin D (2007) C: N: P stoichiometry in soil: is there a “Redfield ratio” for the microbial biomass? Biogeochemistry 85:235–252CrossRef
    Cole CV, Elliott ET, Hunt HW, Coleman DC (1978) Trophic interactions in soils as they affect energy and nutrient dynamics. Phosphorus transformations. Microb Ecol 4:381–387CrossRef
    Coleman DC, Wall DH (2015) Soil fauna: occurrence, biodiversity, and roles in ecosystem function. In: Paul EA (ed) Soil Microbiology, Ecology and Biochemistry, 4th edn. Academic, Boston, pp 111–149
    Coleman DC, Cole CV, Anderson RV, Blaha M, Campion MK, Clarholm M, Elliott ET, Hunt HW, Shaefer B, Sinclair J (1977) An analysis of rhizosphere-saprophage interactions in terrestrial ecosystems. Ecol Bull 25:299–309
    Coleman DC, Anderson RV, Cole CV, Elliott ET, Woods L, Campion MK (1978) Trophic interactions in soils as they affect energy and nutrient dynamics. Flows of metabolic and biomass carbon. Microb Ecol 4:373–380CrossRef
    Courty PE, Pouysegur R, Buée M, Garbaye J (2006) Laccase and phosphatase activities of the dominant ectomycorrhizal types in a lowland oak forest. Soil Biol Biochem 38:1219–1222CrossRef
    Couteaux MM, Darbyshire JF (1998) Functional diversity amongst soil protozoa. Appl Soil 10:229–237CrossRef
    Cowling AJ (1994) Protozoa distribution and adaptation. In: Darbyshire JF (ed) Soil protozoa. CAB International, London, pp 5–42
    Crotty FV, Adl SM, Blackshaw RP, Murray PJ (2013) Measuring soil protist respiration and ingestion rates using stable isotopes. Soil Biol Biochem 57:919–921CrossRef
    Darbyshire JF (1994) Soil protozoa. CAB International, London
    Darbyshire JF, Davidson MS, Chapman SJ, Ritchie S (1994) Excretion of nitrogen and phosphorus by the soil Ciliate Colpoda steinii when fed the soil bacterium Arthrobacter sp. Soil Biol Biochem 26:1193–1199CrossRef
    De Ley P (1992) The nematode community of a marginal soil at Camberene, Senegal, with special attention to functional morphology and niche partitioning in the family Cephalobidae. Mededelingen van de Koninklijke. Academie voor Wetenschappen, Letteren en Schone Kunsten van België, Klasse der Wetenschappen 53:109–153
    De Telegdy‐Kovats L (1932) The growth and respiration of bacteria in sand cultures in the presence and absence of protozoa. Ann Appl Biol 19:65–86CrossRef
    de Vries FT, Thebault E, Liiri M, Birkhofer K, Tsiafouli MA, Bjornlund L, Bracht Jørgensen H, Vincent Brady M, Christensen S, de Ruiter PC, d’Hertefeldt T, Frouz J, Hedlund K, Hemerik L, Gera Hol WH, Hotes S, Mortimer SR, Setala H, Sgardelis SP, Uteseny K, van der Putten WH, Wolters V, Bardgett RD (2013) Soil food web properties explain ecosystem services across European land use systems. Proc Natl Acad Sci U S A 110:14296–14301PubMed PubMedCentral CrossRef
    Decaëns T (2010) Macroecological patterns in soil communities. Global Ecol Biogeogr 19:287–302CrossRef
    Djigal D, Brauman A, Diop TA, Chotte JL, Villenave C (2004) Influence of bacterial-feeding nematodes (Cephalobidae) on soil microbial communities during maize growth. Soil Biol Biochem 36:323–331CrossRef
    Djigal D, Baudoin E, Philippot L, Brauman A, Villenave C (2010) Shifts in size, genetic structure and activity of the soil denitrifier community by nematode grazing. Eur J Soil Biol 46:112–118CrossRef
    Drevon J-J, Hartwig UA (1997) Phosphorus deficiency increases the argon-induced decline of nodule nitrogenase activity in soybean and alfalfa. Planta 201:463–469CrossRef
    Dupouey J-L, Dambrine E, Laffite J-D, Moares C (2002) Irreversible impact of past land use on forest soils and biodiversity. Ecology 83:2978–2984CrossRef
    Ekelund F (1996) Growth kinetics of five common heterotrophic soil flagellates. Eur J Soil Biol 32:15–24
    Ekelund F, Rønn R (1994) Notes on protozoa in agricultural soil with emphasis on heterotrophic flagellates and naked amebas and their ecology. FEMS Microbiol Rev 15:321–353PubMed CrossRef
    Ekelund F, Saj S, Vestergard M, Bertaux J, Mikola J (2009) The “soil microbial loop” is not always needed to explain protozoan stimulation of plants. Soil Biol Biochem 41:2336–2342CrossRef
    Elliott E, Cole C, Coleman D, Anderson R, Hunt H, McClellan J (1979) Amoebal growth in soil microcosms: a model system of C, N, and P. Trophic dynamics. Int J Environ Stud 13:169–174CrossRef
    Elliott ET, Anderson RV, Coleman DC, Cole CV (1980) Habitable pore-space and microbial trophic interactions. Oikos 35:327–335CrossRef
    Elser JJ, Urabe J (1999) The stoichiometry of consumer-driven nutrient recycling: theory, observations, and consequences. Ecology 80:735–751CrossRef
    Elser JJ, Sterner RW, Gorokhova E, Fagan WF, Markow TA, Cotner JB, Harrison JF, Hobbie SE, Odell GM, Weider LW (2000) Biological stoichiometry from genes to ecosystems. Ecol Lett 3:540–550CrossRef
    Elser JJ, Acharya K, Kyle M, Cotner J, Makino W, Markow T, Watts T, Hobbie S, Fagan W, Schade J, Hood J, Sterner RW (2003) Growth rate–stoichiometry couplings in diverse biota. Ecol Lett 6:936–943CrossRef
    Fanin N, Fromin N, Buatois B, Hattenschwiler S (2013) An experimental test of the hypothesis of non-homeostatic consumer stoichiometry in a plant litter-microbe system. Ecol Lett 16:764–772PubMed CrossRef
    Fenner M, Lee W (1989) Growth of seedlings of pasture grasses and legumes deprived of single mineral nutrients. J Appl Ecol 26:223–232CrossRef
    Ferris H, Venette RC, Lau SS (1997) Population energetics of bacterial-feeding nematodes: carbon and nitrogen budgets. Soil Biol Biochem 29:1183–1194CrossRef
    Ferris H, Venette RC, van der Meulen HR, Lau SS (1998) Nitrogen mineralization by bacterial-feeding nematodes: verification and measurement. Plant Soil 203:159–171CrossRef
    Finlay RD (2008) Ecological aspects of mycorrhizal symbiosis: with special emphasis on the functional diversity of interactions involving the extraradical mycelium. J Exp Bot 59:1115–1126PubMed CrossRef
    Foissner W (1999) Soil protozoa as bioindicators: pros and cons, methods, diversity, representative examples. Agric Ecosyst Environ 74:95–112CrossRef
    Foley JA, DeFries R, Asner GP, Barford C, Bonan G, Carpenter SR, Chapin FS, Coe MT, Daily GC, Gibbs HK, Helkowski JH, Holloway T, Howard EA, Kucharik CJ, Monfreda C, Patz JA, Prentice IC, Ramankutty N, Snyder PK (2005) Global consequences of land use. Science 309:570–574PubMed CrossRef
    Fürst von Lieven A (2003) Functional morphology and evolutionary origin of the three-part pharynx in nematodes. Zoology 106:183–201CrossRef
    Gallet-Budynek A, Brzostek E, Rodgers VL, Talbot JM, Hyzy S, Finzi AC (2009) Intact amino acid uptake by northern hardwood and conifer trees. Oecologia 160:129–138PubMed CrossRef
    Gardi C, Jeffery S, Saltelli A (2013) An estimate of potential threats levels to soil biodiversity in EU. Glob Change Biol 19:1538–1548CrossRef
    Geisen S, Fiore-Donno AM, Walochnik J, Bonkowski M (2014) Acanthamoeba everywhere: high diversity of Acanthamoeba in soils. Parasitol Res 113:3151–3158PubMed CrossRef
    Geisen S, Tveit AT, Clark IM, Richter A, Svenning MM, Bonkowski M, Urich T (2015) Metatranscriptomic census of active protists in soils. ISME J. doi:10.​1038/​ismej.​2015.​30 PubMed
    Glücksman E, Bell T, Griffiths RI, Bass D (2010) Closely related protist strains have different grazing impacts on natural bacterial communities. Environ Microbiol 12:3105–3113PubMed CrossRef
    Gould WD, Coleman DC, Rubink AJ (1979) Effect of bacteria and amoebae on rhizosphere phosphatase activity. Appl Environ Microb 37:943–946
    Griffiths BS (1994) Soil nutrient flow. In: Darbyshire JF (ed) Soil protozoa. CAB International, Oxford, pp 65–92
    Griffiths BS, Ritz K (1988) A technique to extract, enumerate and measure protozoa from mineral soils. Soil Biol Biochem 20:163–173CrossRef
    Griffiths BS, Bonkowski M, Dobson G, Caul S (1999) Changes in soil microbial community structure in the presence of microbial-feeding nematodes and protozoa. Pedobiologia 43:297–304
    Griffiths BS, Spilles A, Bonkowski M (2012) C: N: P stoichiometry and nutrient limitation of the soil microbial biomass in a grazed grassland site under experimental P limitation or excess. Ecol Process 1:1–11CrossRef
    Gusewell S (2004) N: P ratios in terrestrial plants: variation and functional significance. New Phytol 164:243–266CrossRef
    Hanley M, Fenner M (1997) Seedling growth of four fire‐following Mediterranean plant species deprived of single mineral nutrients. Funct Ecol 11:398–405CrossRef
    Hedges LV, Gurevitch J, Curtis PS (1999) The meta-analysis of response ratios in experimental ecology. Ecology 80:1150–1156CrossRef
    Herdler S, Kreuzer K, Scheu S, Bonkowski M (2008) Interactions between arbuscular mycorrhizal fungi (Glomus intraradices, Glomeromycota) and amoebae (Acanthamoeba castellanii, Protozoa) in the rhizosphere of rice (Oryza sativa). Soil Biol Biochem 40:660–668CrossRef
    Hinsinger P (2001) Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review. Plant Soil 237:173–195CrossRef
    Hinsinger P, Brauman A, Devau N, Gerard F, Jourdan C, Laclau JP, Le Cadre E, Jaillard B, Plassard C (2011) Acquisition of phosphorus and other poorly mobile nutrients by roots. Where do plant nutrition models fail? Plant Soil 348:29–61CrossRef
    Hodge A, Robinson D, Fitter A (2000) Are microorganisms more effective than plants at competing for nitrogen? Trends Plant Sci 5:304–308PubMed CrossRef
    Horiuchi J-i, Prithiviraj B, Bais HP, Kimball BA, Vivanco JM (2005) Soil nematodes mediate positive interactions between legume plants and rhizobium bacteria. Planta 222:848–857PubMed CrossRef
    Ingham RE, Trofymow J, Ingham ER, Coleman DC (1985) Interactions of bacteria, fungi, and their nematode grazers: effects on nutrient cycling and plant growth. Ecol Monogr 55:119–140CrossRef
    Irshad U, Villenave C, Brauman A, Plassard C (2011) Grazing by nematodes on rhizosphere bacteria enhances nitrate and phosphorus availability to Pinus pinaster seedlings. Soil Biol Biochem 43:2121–2126CrossRef
    Irshad U, Brauman A, Villenave C, Plassard C (2012) Phosphorus acquisition from phytate depends on efficient bacterial grazing, irrespective of the mycorrhizal status of Pinus pinaster. Plant Soil 358:148–161CrossRef
    Jentschke G, Bonkowski M, Godbold DL, Scheu S (1995) Soil protozoa and forest tree growth - Non-nutritional effects and interaction with mycorrhizae. Biol Fert Soils 20:263–269CrossRef
    Jones DL, Nguyen C, Finlay RD (2009) Carbon flow in the rhizosphere: carbon trading at the soil-root interface. Plant Soil 321:5–33CrossRef
    Jousset A (2011) Ecological and evolutive implications of bacterial defences against predators. Environ Microbiol 14:1830–1843PubMed CrossRef
    Jousset A, Lara E, Wall LG, Valverde C (2006) Secondary metabolites help biocontrol strain Pseudomonas fluorescens CHA0 to escape protozoan grazing. Appl Environ Microb 72:7083–7090CrossRef
    Jousset A, Scheu S, Bonkowski M (2008) Secondary metabolite production facilitates establishment of rhizobacteria by reducing both protozoan predation and the competitive effects of indigenous bacteria. Funct Ecol 22:714–719CrossRef
    Jousset A, Rochat L, Péchy-Tarr M, Keel C, Scheu S, Bonkowski M (2009) Predators promote defence of rhizosphere bacterial populations by selective feeding on non-toxic cheaters. ISME J 3:666–674PubMed CrossRef
    Jousset A, Rochat L, Scheu S, Bonkowski M, Keel C (2010) Predator–prey chemical warfare determines the expression of biocontrol genes by rhizosphere-associated Pseudomonas fluorescens. Appl Environ Microb 76:5263–5268CrossRef
    Kibblewhite MG (2012) Definition of priority areas for soil protection at a continental scale. Soil Use Manage 28:128–133CrossRef
    Kibblewhite MG, Ritz K, Swift MJ (2008) Soil health in agricultural systems. Philos T Roy Soc B 363:685–701CrossRef
    Koller R, Robin C, Bonkowski M, Ruess L, Scheu S (2013a) Litter quality as driving factor for plant nutrition via grazing of protozoa on soil microorganisms. FEMS Microbiol Ecol 85:241–250PubMed CrossRef
    Koller R, Rodriguez A, Robin C, Scheu S, Bonkowski M (2013b) Protozoa enhance foraging efficiency of arbuscular mycorrhizal fungi for mineral nitrogen from organic matter in soil to the benefit of host plants. New Phytol 199:203–211PubMed CrossRef
    Koller R, Scheu S, Bonkowski M, Robin C (2013c) Protozoa stimulate N uptake and growth of arbuscular mycorrhizal plants. Soil Biol Biochem 65:204–210CrossRef
    Kreuzer K, Adamczyk J, Iijima M, Wagner M, Scheu S, Bonkowski M (2006) Grazing of a common species of soil protozoa (Acanthamoeba castellanii) affects rhizosphere bacterial community composition and root architecture of rice (Oryza sativa L.). Soil Biol Biochem 38:1665–1672CrossRef
    Krome K, Rosenberg K, Bonkowski M, Scheu S (2009a) Grazing of protozoa on rhizosphere bacteria alters growth and reproduction of Arabidopsis thaliana. Soil Biol Biochem 41:1866–1873CrossRef
    Krome K et al (2009b) Soil bacteria and protozoa affect root branching via effects on the auxin and cytokinin balance in plants. Plant Soil 328:191–201CrossRef
    Kuikman PJ, Van Veen JA (1989) The impact of protozoa on the availability of bacterial nitrogen to plants. Biol Fert Sci 8:13–18CrossRef
    Kuikman PJ, Jansen AG, Van Veen JA, Zehnder AJB (1990) Protozoan predation and the turnover of soil organic-carbon and nitrogen in the presence of plants. Biol Fert Sci 10:22–28CrossRef
    Kuikman PJ, Jansen AG, Van Veen JA (1991) N-15-nitrogen mineralization from bacteria by protozoan grazing at different soil-moisture regimes. Soil Biol Biochem 23:193–200CrossRef
    Kuzyakov Y, Xu X (2013) Competition between roots and microorganisms for nitrogen: mechanisms and ecological relevance. New Phytol 198:656–669PubMed CrossRef
    Lambshead P (1993) Recent developments in marine benthic biodiversity research. Oceanis 19:5
    Lambshead P, Chen Z, Chen W, Chen S, Dickson S (2004) Marine nematode biodiversity. In: Chen ZX et al. (ed) Nematology: Advances and Perspectives. CAB International, pp 436–467
    Lavelle P, Spain AV (2001) Soil Ecology. Kluwer, DordrechtCrossRef
    Leake JR, Johnson D, Donnelly DP, Muckle GE, Boddy L, Read DJ (2004) Networks of power and influence: the role of mycorrhizal mycelium in controlling plant communities and agroecosystem functioning. Can J Bot-Rev Can Bot 82:1016–1045CrossRef
    Lennox LB, Alexander M (1981) Fungicide enhancement of nitrogen fixation and colonization of Phaseolus vulgaris by Rhizobium phaseoli. Appl Environ Microb 41:404–411
    Levrat P, Pussard M, Alabouvette C (1992) Enhanced bacterial metabolism of a Pseudomonas strain in response to the addition of culture filtrate of a bacteriophagous amoeba. Eur J Protistol 28:79–84PubMed CrossRef
    Louche J, Ali MA, Cloutier-Hurteau B, Sauvage F-X, Quiquampoix H, Plassard C (2010) Efficiency of acid phosphatases secreted from the ectomycorrhizal fungus Hebeloma cylindrosporum to hydrolyse organic phosphorus in podzols. FEMS Microbiol Ecol 73:323–335PubMed
    Manzoni S, Taylor P, Richter A, Porporato A, Ågren GI (2012) Environmental and stoichiometric controls on microbial carbon‐use efficiency in soils. New Phytol 196:79–91PubMed CrossRef
    Marmeisse R, Guidot A, Gay G, Lambilliotte R, Sentenac H, Combier JP, Melayah D, Fraissinet-Tachet L, Debaud JC (2004) Hebeloma cylindrosporum - a model species to study ectomycorrhizal symbiosis from gene to ecosystem. New Phytol 163:481–498CrossRef
    Matz C, Kjelleberg S (2005) Off the hook–how bacteria survive protozoan grazing. Trends Microbiol 13:302–307PubMed CrossRef
    Mazzola M, de Bruijn I, Cohen MF, Raaijmakers JM (2009) Protozoan-induced regulation of cyclic lipopeptide biosynthesis is an effective predation defense mechanism for Pseudomonas fluorescens. Appl Environ Microb 75:6804–6811CrossRef
    Meier IC, Avis PG, Phillips RP (2013) Fungal communities influence root exudation rates in pine seedlings. FEMS Microbiol Ecol 83:585–595PubMed CrossRef
    Mooshammer M, Wanek W, Hämmerle I, Fuchslueger L, Hofhansl F, Knoltsch A, Schnecker J, Takriti M, Watzka M, Wild B, Keiblinger KM, Zechmeister-Boltenstern S, Richter A (2014a) Adjustment of microbial nitrogen use efficiency to carbon: nitrogen imbalances regulates soil nitrogen cycling. Nat Commun 5:1–7CrossRef
    Mooshammer M, Wanek W, Zechmeister-Boltenstern S, Richter A (2014b) Stoichiometric imbalances between terrestrial decomposer communities and their resources: mechanisms and implications of microbial adaptations to their resources. Front Microbiol 5:1–10CrossRef
    Nasholm T, Kielland K, Ganeteg U (2009) Uptake of organic nitrogen by plants. New Phytol 182:31–48PubMed CrossRef
    Neff JC, Chapin FS III, Vitousek PM (2003) Breaks in the cycle: dissolved organic nitrogen in terrestrial ecosystems. Front Ecol Environ 1:205–211CrossRef
    Neidig N, Jousset A, Nunes F, Bonkowski M, Paul RJ, Scheu S (2010) Interference between bacterial feeding nematodes and amoebae relies on innate and inducible mutual toxicity. Funct Ecol 24:1133–1138CrossRef
    Olsson PA, Baath E, Jakobsen I, Söderstrom B (1996) Soil bacteria respond to presence of roots but not to mycelium of arbuscular mycorrhizal fungi. Soil Biol Biochem 28:463–470CrossRef
    Parry JD (2004) Protozoan grazing of freshwater biofilms. Adv Appl Microbiol 54:167–196PubMed CrossRef
    Peters JL, Sutton AJ, Jones DR, Abrams KR, Rushton L (2006) Comparison of two methods to detect publication bias in meta-analysis. Jama-J Am Med Assoc 295:676–680CrossRef
    Pimentel D (2006) Soil erosion: a food and environmental threat. Environ Dev Sust 8:119–137CrossRef
    Plassard C, Dell B (2010) Phosphorus nutrition of mycorrhizal trees. Tree Physiol 30:1129–1139PubMed CrossRef
    Plassard C, Bonafos B, Touraine B (2000) Differential effects of mineral and organic N sources, and of ectomycorrhizal infection by Hebeloma cylindrosporum, on growth and N utilization in Pinus pinaster. Plant Cell Environ 23:1195–1205CrossRef
    Plassard C, Louche J, Ali MA, Duchemin M, Legname E, Cloutier-Hurteau B (2011) Diversity in phosphorus mobilisation and uptake in ectomycorrhizal fungi. Ann For Sci 68:33–43CrossRef
    Postma-Blaauw M, de Vries FT, De Goede R, Bloem J, Faber J, Brussaard L (2005) Within-trophic group interactions of bacterivorous nematode species and their effects on the bacterial community and nitrogen mineralization. Oecologia 142:428–439PubMed CrossRef
    Puglisi E, Pascazio S, Suciu N, Cattani I, Fait G, Spaccini R, Crecchio C, Piccolo A, Trevisan M (2013) Rhizosphere microbial diversity as influenced by humic substance amendments and chemical composition of rhizodeposits. J Geochem Explor 129:82–94CrossRef
    Pussard M, Alabouvette C, Levrat P (1994) Protozoan interactions with the soil microflora and possibilities for biocontrol of plant pathogens. In: Darbyshire JF (ed) Soil Protozoa. CAB International, Oxford, pp 123–146
    Ramirez C, Alexander M (1980) Evidence suggesting protozoan predation on Rhizobium associated with germinating seeds and in the rhizosphere of beans (Phaseolus vulgaris L.). Appl Environ Microb 40:492–499
    Rønn R, McCaig AE, Griffiths BS, Prosser JI (2002) Impact of protozoan grazing on bacterial community structure in soil microcosms. Appl Environ Microb 68:6094–6105CrossRef
    Rønn R, Vestergard M, Ekelund F (2012) Interactions between bacteria, protozoa and nematodes in soil. Acta Protozool 51:223–235
    Rosenberg K, Bertaux J, Krome K, Hartmann A, Scheu S, Bonkowski M (2009) Soil amoebae rapidly change bacterial community composition in the rhizosphere of Arabidopsis thaliana. ISME J 3:675–684PubMed CrossRef
    Saleem M, Fetzer I, Dormann CF, Harms H, Chatzinotas A (2012) Predator richness increases the effect of prey diversity on prey yield. Nat Commun 3:1305PubMed CrossRef
    Sardans J, Rivas-Ubach A, Penuelas J (2012) The elemental stoichiometry of aquatic and terrestrial ecosystems and its relationships with organismic lifestyle and ecosystem structure and function: a review and perspectives. Biogeochemistry 111:1–39CrossRef
    Schlaghamersky J, Eisenhauer N, Frelichc LE (2014) Earthworm invasion alters enchytraeid community composition and individual biomass in northern hardwood forests of North America. Appl Soil 83:159–169CrossRef
    Sinsabaugh RL, Manzoni S, Moorhead DL, Richter A (2013) Carbon use efficiency of microbial communities: stoichiometry, methodology and modelling. Ecol Lett 16:930–939PubMed CrossRef
    Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic, London
    Somasundaram S, Bonkowski M, Iijima M (2008) Functional role of mucilage-border cells: a complex facilitating protozoan effects on plant growth. Plant Prod Sci 11:344–351CrossRef
    Sundin P, Valeur A, Olsson S, Odham G (1990) Interactions between bacteria-feeding nematodes and bacteria in the rape rhizosphere - Effects on root exudation and distribution of bacteria. FEMS Microbiol Ecol 73:13–22CrossRef
    Tao J, Chen X, Liu M, Hu F, Griffiths B, Li H (2009) Earthworms change the abundance and community structure of nematodes and protozoa in a maize residue amended rice-wheat rotation agro-ecosystem. Soil Biol Biochem 41:898–904CrossRef
    Tibbett M, Sanders FE (2002) Ectomycorrhizal symbiosis can enhance plant nutrition through improved access to discrete organic nutrient patches of high resource quality. Ann Bot-London 89:783–789CrossRef
    Venette RC, Ferris H (1998) Influence of bacterial type and density on population growth of bacterial-feeding nematodes. Soil Biol Biochem 30:949–960CrossRef
    Vitousek PM et al (2002) Towards an ecological understanding of biological nitrogen fixation. Biogeochemistry 57:1–45CrossRef
    Wagg C, Bender SF, Widmer F, van der Heijden MGA (2014) Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proc Natl Acad Sci U S A 111:5266–5270PubMed PubMedCentral CrossRef
    Wall DH, Bardgett RD, Kelly EF (2010) Biodiversity in the dark. Nat Geosci 3:297–298CrossRef
    Wallenda T, Read DJ (1999) Kinetics of amino acid uptake by ectomycorrhizal roots. Plant Cell Environ 22:179–187CrossRef
    Weekers PH, Bodelier PL, Wijen JP, Vogels GD (1993) Effects of grazing by the free-living soil amoebae Acanthamoeba castellanii, Acanthamoeba polyphaga, and Hartmannella vermiformis on various bacteria. Appl Environ Microb 59:2317–2319
    Weisse T (2002) The significance of inter- and intraspecific variation in bacterivorous and herbivorous protists. Anton Leeuw Int J G 81:327–341CrossRef
    Wright DJ (1975) Elimination of nitrogenous compounds by Panagrellus redivivus, Goodey, 1945 (Nematoda: Cephalobidae). Comp Biochem Phys B 52:247–253CrossRef
    Xiao HF, Griffiths B, Chen XY, Liu MQ, Jiao JG, Hu F, Li HX (2010) Influence of bacterial-feeding nematodes on nitrification and the ammonia-oxidizing bacteria (AOB) community composition. Appl Soil 45:131–137CrossRef
    Xu X, Thornton PE, Post WM (2013) A global analysis of soil microbial biomass carbon, nitrogen and phosphorus in terrestrial ecosystems. Global Ecol Biogeogr 22:737–749CrossRef
    Yeates GW (2003) Nematodes as soil indicators: functional and biodiversity aspects. Biol Fert Sci 37:199–210
    Yeates G (2007) Abundance, diversity, and resilience of nematode assemblages in forest soils. Can J Forest Res 37:216–225CrossRef
    Zechmeister-Boltenstern S, Keiblinger KM, Mooshammer M, Peñuelas J, Richter A, Sardans J, Wanek W (2015) The application of ecological stoichiometry to plant–microbial–soil organic matter transformations. Ecol Monogr 85:133–155CrossRef
    Zwart KB, Darbyshire JF (1992) Growth and nitrogenous excretion of a common soil flagellate Spumella sp. - a laboratory experiment. J Soil Sci 43:145–157CrossRef
  • 作者单位:Jean Trap (1)
    Michael Bonkowski (2)
    Claude Plassard (3)
    Cécile Villenave (4)
    Eric Blanchart (1)

    1. Institut de Recherche pour le Développement – UMR Eco&Sols, 2 Place Viala, 34060, Montpellier, France
    2. Department of Terrestrial Ecology, Institut of Zoology, University of Cologne, D-50674, Köln, Germany
    3. Institut National de Recherche Agronomique – UMR Eco&Sols, 2 Place Viala, 34060, Montpellier, France
    4. ELISOL Environnement, 10 avenue du Midi, 30111, Congenies, France
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Plant Sciences
    Soil Science and Conservation
    Plant Physiology
    Ecology
  • 出版者:Springer Netherlands
  • ISSN:1573-5036
文摘
Background Bacterivores, mostly represented by protists and nematodes, are a key component of soil biodiversity involved in soil fertility and plant productivity. In the current context of global change and soil biodiversity erosion, it becomes urgent to suitably recognize and quantify their ecological importance in ecosystem functioning.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700