Optimal cascade hydraulic control for a parallel robot platform by PSO
详细信息    查看全文
  • 作者:Novak Nedic (1)
    Dragan Prsic (1)
    Ljubisa Dubonjic (1)
    Vladimir Stojanovic (1)
    Vladimir Djordjevic (1)
  • 关键词:Optimal control ; Cascade control ; Hydraulically control systems ; Parallel robot platform ; Particle swarm optimization ; Tracking problem
  • 刊名:The International Journal of Advanced Manufacturing Technology
  • 出版年:2014
  • 出版时间:May 2014
  • 年:2014
  • 卷:72
  • 期:5-8
  • 页码:1085-1098
  • 全文大小:
  • 参考文献:1. Stewart D (1965) A platform with six degrees of freedom. Proceedings of the Institution of Mechanical Engineers, Journal of Power and Energy 180(15):371-86 CrossRef
    2. Zhou JJ (1995) Experimental evaluations of a kinematic compensation control method for hydraulic robot manipulators. Control Engineering Practice 3(5):675-84 CrossRef
    3. Su YX, Duan BY, Zheng CH (2004) Nonlinear PID control of a six-DOF parallel manipulator. IEE Proceedings - Control Theory Applications 151(1):95-02 CrossRef
    4. Stefanovic M, Zhang H (2012) Results on the robust observer-based position controller for parallel kinematic machines. Journal of Intelligent and Robotic Systems 66(4):417-28 CrossRef
    5. Merritt HE (1967) Hydraulic control systems. Wiley, New York
    6. Filipovic V, Nedic N, Stojanovic V (2011) Robust identification of pneumatic servo actuators in the real situations. Forschung im Ingenieurwesen - Engineering Research 75(4):183-96 CrossRef
    7. Dihovicni D, Nedic N (2008) Simulation, animation and program support for a high performance pneumatic force actuator system. Mathematical and Computer Modeling 48(5-):761-68 CrossRef
    8. Tao G, Kokotovic PV (1994) Adaptive control of plants with unknown dead-zones. IEEE Transactions on Automatic Control 39(1):59-8 CrossRef
    9. Tao G, Kokotovic PV (1996) Adaptive control of systems with actuator and sensor nonlinearities. Wiley, New York
    10. Soltanpour MR, Fateh MM (2009) Sliding mode robust control of robot manipulators in the task space by support of feedback linearization and backstepping control. World Applied Sciences Journal 6(1):70-6
    11. Shafiei SE, Soltanpour MR (2011) Neural network sliding model-PID controller design for electrically driven robot manipulators. International Journal of Innovative Computing, Information and Control 7(2):3949-960
    12. Spong MW, Hutchinson S, Vidyasagar M (2006) Robot modeling and control. Wiley, Hoboken
    13. Heintze J, Teerhuis PC, Weiden AJJ (1996) Controlled hydraulics for a direct drive brick laying robot. Automation in Construction 5(1):23-9 CrossRef
    14. Sepehri N, Dumont GAM, Lawrence PD, Sassani F (1990) Cascade control of hydraulically actuated manipulators. Robotica 8(3):207-16 CrossRef
    15. Filipovic V, Nedic N (2008) PID regulators. Faculty of Mechanical Engineering Kraljevo
    16. Guo HB, Liu YG, Liu GR, Li HR (2008) Cascade control of a hydraulically driven 6-DOF parallel robot manipulator based on a sliding mode. Control Engineering Practice 16(9):1055-068 CrossRef
    17. Jelali M, Kroll A (2002) Hydraulic servo-systems. Springer, Berlin
    18. Rao SS (2009) Engineering optimization: theory and practice. Wiley, New York CrossRef
    19. Kennedy J, Eberhart R (1995) Particle swarm optimization. Proceeding of IEEE International Conference on Neural Networks 4:1942-948
    20. Kennedy J, Eberhart RC, Shi Y (2001) Swarm intelligence. Morgan Kaufmann, San Francisco
    21. Parsopoulos KE, Vrahatis MN (2002) Recent approaches to global optimization problems through particle swarm optimization. Natural Computing 1(2-):235-06 CrossRef
    22. Kalayci CB, Gupta SM (2013) A particle swarm optimization algorithm with neighborhood-based mutation for sequence-dependent disassembly line balancing problem. Int J Adv Manuf Technol 69(1):197-09 CrossRef
    23. Tian Y, Liu D, Yuan D, Wang K (2013) A discrete PSO for two-stage assembly scheduling problem. Int J Adv Manuf Technol 66(1-):481-99 CrossRef
    24. Kennedy J, Eberhart RC (1999) The particle swarm: social adaptation in informal-processing systems. New ideas in optimization. Maidenhead McGraw-Hill, London, pp 379-87
    25. Kim TH, Maruta I, Sugie T (2008) Robust PID controller tuning based on the constrained particle swarm optimization. Automatica 44(4):1104-110 CrossRef
    26. Min HQ, Zhu JH, Zheg XJ (2005) Obstacle avoidance with multi-objective optimization by PSO in dynamic environment. Proceedings of the IEEE Fourth International Conference on Machine Learning and Cybernetics, Guangzhou :2950-956.
    27. Kiranyaz S, Pulkkinen J, Gabbouj M (2011) Multi-dimensional particle swarm optimization in dynamic environments. Expert Systems with Applications 38(3):2212-223 CrossRef
    28. Kennedy J, Eberhart RC, Shi Y (2001) Swarm intelligence. Morgan Kaufmann, New York
    29. Eberhart RC, Shi YH (2001) Tracking and optimizing dynamic systems with particle swarms. Proc. IEEE Congress on Evolutionary Computation, Seoul, Korea, pp 94-7
    30. Bergh FV, Engelbrecht AP (2006) A study of particle swarm optimization particle trajectories. Inform Sci 176(8):937-71 CrossRef
    31. Bingul Z, Karahan O (2011) A fuzzy logic controller tuned with PSO for 2 DOF robot trajectory control. Expert Systems with Applications 38(1):1017-031 CrossRef
    32. Blackburn JF, Reethof G, Shearer JL (1960) Fluid power control. Press, Cambridge, M.I.T
    33. Omran A, Kassem A (2011) Optimal task space control design of a Stewart manipulator for aircraft stall recovery. Aerospace Science and Technology 15(5):353-65 CrossRef
    34. Omran A, Kassem A, Bayoumi G, Bayoumi M (2009) Mission-based optimal control of Stewart manipulator. Aircraft Engineering and Aerospace Technology 81(3):147-53 CrossRef
    35. Bernzen W (1999) Zur Regelung elastischer Roboter mit hydraulischen Antrieben. VDI Fortschritt-Berichte, VDI-Verlag, Düsseldorf
    36. Rankovi? V (2008) Intelligent control. Faculty of Mechanical Engineering Kragujevac
    37. Cominos P, Munro N (2002) PID controllers: recent tuning methods and design to specification. IEEE Proceedings, Control Theory and Applications 149(1):46-3 CrossRef
    38. Dubonji? L, Nedi? N, Filipovi? V, Pr?i? D (2013) Design of PI controllers for hydraulic control systems. Math Probl Eng. doi:10.1155/2013/451312
    39. Krohling RA, Rey JP (2001) Design of optimal disturbance rejection PID controllers using genetic algorithm. IEEE Transactions on Evolutionary Computation 5(1):78-2 CrossRef
  • 作者单位:Novak Nedic (1)
    Dragan Prsic (1)
    Ljubisa Dubonjic (1)
    Vladimir Stojanovic (1)
    Vladimir Djordjevic (1)

    1. Department of Energetics and Automatic Control, Faculty of Mechanical and Civil Engineering in Kraljevo, University of Kragujevac, Dositejeva 19, 36000, Kraljevo, Serbia
  • ISSN:1433-3015
文摘
A new cascade load force control design for a parallel robot platform is proposed. A parameter search for a proposed cascade controller is difficult because there is no methodology to set the parameters and the search space is broad. A parameter search based on particle swarm optimization (PSO) is suggested to effectively search the parameters of the cascade controller. We used a unified mathematical model of a hydraulic actuator of parallel robot platform. These equations are readily applicable to various types of proportional valves, and they unify the cases of critical center, overlapped, and underlapped valves. These unified model equations are useful for nonlinear controller design. Simulation results show the advantages of the proposed optimal tuned cascade controller to solve the formulated tracking problem in relation to the classical proportional–integral (PI) controller.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700