Cerebrospinal Fluid and Plasma Oxidative Stress Biomarkers in Different Clinical Phenotypes of Neuroinflammatory Acute Attacks. Conceptual Accession: From Fundamental to Clinic
详细信息    查看全文
  • 作者:Srdjan Ljubisavljevic (1) (2)
    Ivana Stojanovic (3)
    Slobodan Vojinovic (1)
    Dragan Stojanov (4)
    Svetlana Stojanovic (3)
    Gordana Kocic (3)
    Dejan Savic (1)
    Tatjana Cvetkovic (3)
    Dusica Pavlovic (3)
  • 关键词:Malondialdehyde ; Catalase ; Superoxide dismutase ; Clinically isolated syndrome ; Relapsing remitting multiple sclerosis
  • 刊名:Cellular and Molecular Neurobiology
  • 出版年:2013
  • 出版时间:August 2013
  • 年:2013
  • 卷:33
  • 期:6
  • 页码:767-777
  • 全文大小:330KB
  • 参考文献:1. Afonso V, Champy R, Mitrovic D, Collin P, Lomri A (2007) Reactive oxygen species and superoxide dismutases: role in joint disease. Joint Bone Spine 74:324-29 CrossRef
    2. Andreeva IL, Kozemjakin AL, Kiskun AA (1988) Modifikacija metoda opredelenia perekisej lipidov v teste s tiobarbiturovoj kislotoj. Lab Delo 11:41-3
    3. Baud O, Greene AE, Li J, Wang H, Volpe JJ, Rosenberg PA (2004) Glutathione peroxidase-catalase cooperativity is required for resistance to hydrogen peroxide by mature rat oligodendrocytes. J Neurosci 24:1531-540 CrossRef
    4. Bjartmar C, Trapp BD (2001) Axonal and neuronal degeneration in multiple sclerosis: mechanisms and functional consequences. Curr Opin Neurol 14:271-78 CrossRef
    5. Brex PA, Miszkiel KA, O’Riordan JI, Plant GT, Moseley IF, Thompson AJ, Miller DH (2001) Assessing the risk of early multiple sclerosis in patients with clinically isolated syndromes: the role of a follow up MRI. J Neurol Neurosurg Psychiatry 70:390-93 CrossRef
    6. Calabrase V, Raffaele R, Cosentino E, Rizza V (1994) Changes in cerebrospinal fluid levels of malondialdehyde and glutathione reductase activity in multiple sclerosis. Int J Clin Pharmacol Res 14:119-23
    7. Calabrese V, Scapagnini G, Ravagna A, Bella R, Foresti R, Bates TE, Giuffrida Stella AM, Pennisi G (2002) Nitric oxide synthase is present in the cerebrospinal fluid of patients with active multiple sclerosis and is associated with increases in cerebrospinal fluid protein nitrotyrosine and / S-nitrosothiols and with changes in glutathione levels. J Neurosci Res 70:580-87 CrossRef
    8. Dalton CM, Brex PA, Miszkiel KA, Hickman SJ, MacManus DG, Plant GT, Thompson AJ, Miller DH (2002) Application of the new McDonald criteria to patients with clinically isolated syndromes suggestive of multiple sclerosis. Ann Neurol 52:47-3 CrossRef
    9. Erden Inal M, Kanbak G, Sunal E (2001) Antioxidant enzyme activities and malondialdehyde levels related to aging. Clin Chim Acta 305:75-0 CrossRef
    10. Ferretti G, Bacchetti T (2011) Peroxidation of lipoproteins in multiple sclerosis. J Neurol Sci 311(1):92-7 CrossRef
    11. Ferretti G, Bacchetti T, Principi F, Di Ludovico F, Viti B, Angeleri VA, Danni M, Provinciali L (2005) Increased levels of lipid hydroperoxides in plasma of patients with multiple sclerosis: a relationship with paraoxonase activity. Mult Scler 11:677-82 CrossRef
    12. Gilgun-Sherki Y, Melamed E, Offen D (2004) The role of oxidative stress in the pathogenesis of multiple sclerosis: the need for effective antioxidant therapy. J Neurol 251:261-68 CrossRef
    13. Glabinski A, Tawsek NS, Bartosz G (1993) Increased generation of superoxide radicals in the blood of MS patients. Acta Neurol Scand 88:174-77 CrossRef
    14. Goth L (1991) Serum catalase: reversibly formed charge isoform of erythrocyte catalase. Clin Chem 37(2):2043-047
    15. Haider L, Fischer MT, Frischer JM, Bauer J, H?ftberger R, Botond G, Esterbauer H, Binder CJ, Witztum JL, Lassmann H (2011) Oxidative damage in multiple sclerosis lesions. Brain 134(7):1914-924 CrossRef
    16. Han MH, Hwang SI, Roy DB, Lundgren DH, Price JV, Ousman SS, Fernald GH, Gerlitz B, Robinson WH, Baranzini SE, Grinnell BW, Raine CS, Sobel RA, Han DK, Steinman L (2008) Proteomic analysis of active multiple sclerosis lesions reveals therapeutic targets. Nature 451:1076-081 CrossRef
    17. Hunter MI, Nlemadim BC, Davidson DL (1985) Lipid peroxidation products and antioxidant proteins in plasma and cerebrospinal fluid from multiple sclerosis patients. Neurochem Res 10:1645-652 CrossRef
    18. Ilhan A, Akyol O, Gurel A, Armutcu F, Iraz M, Oztas E (2004) Protective effects of caffeic acid phenethyl ester against experimental allergic encephalomyelitis-induced oxidative stress in rats. Free Radic Biol Med 37:386-94 CrossRef
    19. Jana A, Hogan EL, Pahan K (2009) Ceramide and neurodegeneration: susceptibility of neurons and oligodendrocytes to cell damage and death. J Neurol Sci 278(1):5-5 CrossRef
    20. Johnson F, Giulivi C (2005) Superoxide dismutases and their impact upon human health. Mol Aspects Med 26(4-):340-52 CrossRef
    21. Keles MS, Taysi S, Sen N, Aksoy H, Ak?ay F (2001) Effect of corticosteroid therapy on serum and CSF malondialdehyde and antioxidant proteins in multiple sclerosis. Can J Neurol Sci 28(2):141-43
    22. Koch MW, Ramsaransing GS, Arutjunyan AV, Stepanov M, Teelken A, Heersema DJ, De Keyser J (2006) Oxidative stress in serum and peripheral blood leukocytes in patients with different disease courses of multiple sclerosis. J Neurol 253:483-87 CrossRef
    23. Kocha M, Mosterta J, Arutjunyanb AV, Stepanovb M, Teelkena A, Heersemaa D, De Keysera J (2007) Plasma lipid peroxidation and progression of disability in multiple sclerosis. Eur J Neurol 14:529-33 CrossRef
    24. Kurtzke JF (1983) Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology 33:1444-452 CrossRef
    25. Lambeth JD (2004) NOX enzymes and the biology of reactive oxygen. Nat Rev Immunol 4:181-89 CrossRef
    26. Liu Y, Hao W, Letiembre M, Walter S, Kulanga M, Neumann H, Fassbender K (2006) Suppression of microglial inflammatory activity by myelin phagocytosis: role of p47-PHOX-mediated generation of reactive oxygen species. J Neurosci 26(50):12904-2913 CrossRef
    27. Ljubisavljevic S, Stojanovic I, Vojinovic S, Stojanov D, Stojanovic S, Cvetkovic T, Savic D, Pavlovic D (2013) The patients with clinically isolated syndrome and relapsing remitting multiples sclerosis show different levels of advanced protein oxidation products and reduced thiols content in sera and CSF. Neurochem Int 62(7):988-97 CrossRef
    28. Lublin FD, Reingold SC (1996) Defining the clinical course of multiple sclerosis: results of an international survey—National Multiple Sclerosis Society (USA) Advisory Committee on Clinical Trials of New Agents in Multiple Sclerosis. Neurology 46:907-11 CrossRef
    29. Miller AF (2004) Superoxide dismutases: active sites that save, but a protein that kills. Curr Opin Chem Biol 8(2):162-68 CrossRef
    30. Miller E, Mrowicka M, Saluk-Juszczak J, Ireneusz M (2011) The level of isoprostanes as a non-invasive marker for in vivo lipid peroxidation in secondary progressive multiple sclerosis. Neurochem Res 36:1012-016 CrossRef
    31. Minami M, Yoshikawa H (1979) A simplified assay method of superoxide dismutase activity for clinical use. Clin Chim Acta 92:337-42 CrossRef
    32. Mirshafiey A, Mohsenzadegan M (2009) Antioxidant therapy in multiple sclerosis. Immunopharmacol Immunotoxicol 31(1):13-9 CrossRef
    33. Mitosek-Szewczyk K, Gordon-Krajcer W, Walendzik P, Stelmasiak Z (2010) Free radical peroxidation products in cerebrospinal fluid and serum of patients with multiple sclerosis after glucocorticoid therapy. Folia Neuropathol 48(2):116-22
    34. Naidoo R, Knapp ML (1992) Studies of lipid peroxidation products in cerebrospinal fluid and serum in multiple sclerosis and other conditions. Clin Chem 38:2449-454
    35. Namaki S, Mohsenzadegan M, Mirshafiey A (2009) Superoxide dismutase: a light horizon in treatment of multiple sclerosis. J Chin Clin Med 4(10):585-91
    36. Penga F, Yanga Y, Liua J, Jianga Y, Zhua C, Denga X, Hua X, Chena X, Zhongb X (2012) Low antioxidant status of serum uric acid, bilirubin and albumin in patients with neuromyelitis optica. Eur J Neurol 19:277-83 CrossRef
    37. Polman CH, Reingold SC, Banwell B, Clanet M, Cohen JA, Filippi M, Fujihara K, Havrdova E, Hutchinson M, Kappos L, Lublin FD, Montalban X, O’Connor P, Sandberg-Wollheim M, Thompson AJ, Waubant E, Weinshenker B, Wolinsky JS (2011) Diagnostic criteria for multiple sclerosis: 2010 Revisions to the McDonald criteria. Ann Neurol 69(2):292-02 CrossRef
    38. Qi X, Guy J, Nick H, Valentine J, Rao N (1997) Increase of manganese superoxide dismutase, but not of Cu/Zn–SOD, in experimental optic neuritis. Invest Ophthalmol Vis Sci 38(6):1203-212
    39. Qi X, Hauswirth WW, Guy J (2007) Dual gene therapy with extracellular superoxide dismutase and catalase attenuates experimental optic neuritis. Mol Vis 13:1-1
    40. Quintana FJ, Yeste A, Weiner HL, Covacu R (2012) Lipids and lipid-reactive antibodies as biomarkers for multiple sclerosis. J Neuroimmunol 248(1):53-7 CrossRef
    41. Rogovina NI, Koklov AP (1980) Metabolism of lipid peroxidation products in multiple sclerosis patients. Zh Nevropatol Psikhiatr 80:696-00
    42. Sbardella E, Greco A, Stromillo ML, Prosperini L, Puopolo M, Cefaro LA, Pantano P, De Stefano N, Minghetti L, Pozzilli C (2012) Isoprostanes in clinically isolated syndrome and early multiple sclerosis as biomarkers of tissue damage and predictors of clinical course. Mult Scler. doi:10.1177/1352458512457721
    43. Schreibelt G, van Horssen J, van Rossum S, Dijkstra CD, Drukarch B, de Vries HE (2007) Therapeutic potential and biological role of endogenous antioxidant enzymes in multiple sclerosis pathology. Brain Res Rev 56(2):322-30 CrossRef
    44. Segal BH, Leto LT, Gallin JI, Malech HL, Holland SM (2000) Genetic biochemical and clinical features of chronic granulomatous disease. Medicine 79:170-00 CrossRef
    45. Singh I, Paintlia AS, Khan M, Stanislaus R, Paintlia MK, Haq E, Singh AK, Contreras MA (2004) Impaired peroxisomal function in the central nervous system with inflammatory disease of experimental autoimmune encephalomyelitis animals and protection by lovastatin treatment. Brain Res 1022(1-):1-1 CrossRef
    46. Tajouri L, Mellick AS, Ashton KJ, Tannenberg AEG, Nagra RM, Tourtellotte WW, Griffiths LR (2003) Quantitative and qualitative changes in gene expression patterns characterize the activity of plaques in multiple sclerosis. Mol Brain Res 119(2):170-83 CrossRef
    47. Tavazzi B, Batocchi AP, Amorini AM, Nociti V, D’Urso S, Longo S, Gullotta S, Picardi M, Lazzarin G (2011) Serum metabolic profile in multiple sclerosis patients. Mult Scler Int. doi:10.1155/2011/167156
    48. van Horssen J, Schreibelt G, Drexhage J, Hazes T, Dijkstra CD, van der Valk P, de Vries HE (2008) Severe oxidative damage in multiple sclerosis lesions coincides with enhanced antioxidant enzyme expression. Free Radical Biol Med 45(12):1729-737 CrossRef
    49. van Horssen J, Witte ME, Schreibelt G, de Vries HE (2011) Radical changes in multiple sclerosis pathogenesis. BBA Mol Basis Dis 1812(2):141-50 CrossRef
    50. Yoshida E, Mokunoa K, Aoki S, Takahashi A, Riku S, Murayama T, Yanagi T, Kato K (1994) Cerebrospinal fluid levels of superoxide dismutases in neurological diseases detected by sensitive enzyme immunoassays. J Neurol Sci 124:25-1 CrossRef
  • 作者单位:Srdjan Ljubisavljevic (1) (2)
    Ivana Stojanovic (3)
    Slobodan Vojinovic (1)
    Dragan Stojanov (4)
    Svetlana Stojanovic (3)
    Gordana Kocic (3)
    Dejan Savic (1)
    Tatjana Cvetkovic (3)
    Dusica Pavlovic (3)

    1. Clinic of Neurology, Clinical Centre Nis, Bul. Dr Zorana Djindjica 48, 18000, Nis, Serbia
    2. Institute for Pathophysiology, Faculty of Medicine, University of Nis, Bul. Dr Zorana Djindjica 81, 18000, Nis, Serbia
    3. Institute for Biochemistry, Faculty of Medicine, University of Nis, Bul. Dr Zorana Djindjica 81, 18000, Nis, Serbia
    4. Center for Radiology, Clinical Centre Nis, Bul. Dr Zorana Djindjica 48, 18000, Nis, Serbia
文摘
Oxidative stress is revealed as the main contributor in the pathophysiology of neuroinflammation. Analyzing plasma and cerebrospinal fluid (CSF) of patients with different clinical phenotypes of neuroinflammation, defined as clinically isolated syndrome (CIS), and those defined as relapsing remitting multiples sclerosis (RRMS), we tested peripheral and CNS oxidative stress intensity in these neuroinflammatory acute attacks. All obtained values changes were assessed regarding clinical and radiological features of CNS inflammation. The obtained results revealed an increase in malondialdehyde levels in plasma and CSF in CIS and RRMS patients compared to control values (p?<?0.05). The obtained values were most prevailed in both study group, CIS and RRMS, in patients with severe clinical presentation (p?<?0.05). Measured activities of catalase and total superoxide dismutase were higher in CIS and RRMS patients in plasma compared to control values (p?<?0.05), parallel with an increased catalase activity and decrease in superoxide dismutase activity in CSF regarding values obtained in control group (p?<?0.05). The positive correlations regarding clinical score were obtained for all tested biomarkers (p?<?0.01). Although the positive correlations were observed in MDA levels in plasma and CSF, for both study patients, and their radiological findings (p?<?0.01), and a negative correlation in plasma SOD activity and CIS patients-radiological findings (p?<?0.01), no other similar correlations were obtained. These findings might be useful in providing the earliest antioxidative treatment in neuroinflammation aimed to preserve total and CNS antioxidative capacity parallel with delaying irreversible, later neurological disabilities.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700