Genetic traits for hematogeneous tumor cell dissemination in cancer patients
详细信息    查看全文
  • 作者:Simon A. Joosse ; Klaus Pantel
  • 关键词:Cancer ; Circulating tumor cells ; Disseminated tumor cells ; Metastasis ; Genetic progression
  • 刊名:Cancer and Metastasis Reviews
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:35
  • 期:1
  • 页码:41-48
  • 全文大小:415 KB
  • 参考文献:1.Muller, V., Alix-Panabieres, C., & Pantel, K. (2010). Insights into minimal residual disease in cancer patients: implications for anti-cancer therapies. European Journal of Cancer, 46(7), 1189–1197. doi:10.​1016/​j.​ejca.​2010.​02.​038 .CrossRef PubMed
    2.Joosse, S.A., Gorges, T.M., & Pantel, K. (2014). Biology, detection, and clinical implications of circulating tumor cells. EMBO Molecular Medicine, 7(1),1–11. doi: 10.15252/emmm.201303698.
    3.Joosse, S. A., & Pantel, K. (2013). Biologic challenges in the detection of circulating tumor cells. Cancer Research, 73(1), 8–11. doi:10.​1158/​0008-5472.​CAN-12-3422 .CrossRef PubMed
    4.Joosse, S. A., Hannemann, J., Spotter, J., Bauche, A., Andreas, A., Muller, V., et al. (2012). Changes in keratin expression during metastatic progression of breast cancer: impact on the detection of circulating tumor cells. Clinical Cancer Research An Official Journal of the American Association for Cancer Research, 18(4), 993–1003. doi:10.​1158/​1078-0432.​CCR-11-2100 .CrossRef PubMed
    5.Riethdorf, S., Fritsche, H., Muller, V., Rau, T., Schindlbeck, C., Rack, B., et al. (2007). Detection of circulating tumor cells in peripheral blood of patients with metastatic breast cancer: a validation study of the CellSearch system. Clinical Cancer Research An Official Journal of the American Association for Cancer Research, 13(3), 920–928. doi:10.​1158/​1078-0432.​CCR-06-1695 .CrossRef PubMed
    6.Zhang, L., Riethdorf, S., Wu, G., Wang, T., Yang, K., Peng, G., et al. (2012). Meta-analysis of the prognostic value of circulating tumor cells in breast cancer. Clinical Cancer Research An Official Journal Of the American Association for Cancer Research, 18(20), 5701–5710. doi:10.​1158/​1078-0432.​CCR-12-1587 .CrossRef PubMed
    7.Babayan, A., Hannemann, J., Spotter, J., Muller, V., Pantel, K., & Joosse, S. A. (2013). Heterogeneity of estrogen receptor expression in circulating tumor cells from metastatic breast cancer patients. PLoS ONE, 8(9), e75038. doi:10.​1371/​journal.​pone.​0075038 .CrossRef PubMed PubMedCentral
    8.Schramm, A., Friedl, T. W., Schochter, F., Scholz, C., de Gregorio, N., Huober, J., et al. (2015). Therapeutic intervention based on circulating tumor cell phenotype in metastatic breast cancer: concept of the DETECT study program. Archives of Gynecology and Obstetrics. doi:10.​1007/​s00404-015-3879-7 .
    9.Antonarakis, E. S., Lu, C., Wang, H., Luber, B., Nakazawa, M., Roeser, J. C., et al. (2014). AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer. The New England Journal of Medicine, 371(11), 1028–1038. doi:10.​1056/​NEJMoa1315815 .CrossRef PubMed PubMedCentral
    10.Thiery, J. P., Acloque, H., Huang, R. Y., & Nieto, M. A. (2009). Epithelial-mesenchymal transitions in development and disease. Cell, 139(5), 871–890. doi:10.​1016/​j.​cell.​2009.​11.​007 .CrossRef PubMed
    11.Lange, T., Samatov, T. R., Tonevitsky, A. G., & Schumacher, U. (2014). Importance of altered glycoprotein-bound N- and O-glycans for epithelial-to-mesenchymal transition and adhesion of cancer cells. Carbohydrate Research, 389, 39–45. doi:10.​1016/​j.​carres.​2014.​01.​010 .CrossRef PubMed
    12.Dancey, J. E., Bedard, P. L., Onetto, N., & Hudson, T. J. (2012). The genetic basis for cancer treatment decisions. Cell, 148(3), 409–420. doi:10.​1016/​j.​cell.​2012.​01.​014 .CrossRef PubMed
    13.Dienstmann, R., Rodon, J., & Tabernero, J. (2013). Biomarker-driven patient selection for early clinical trials. Current Opinion in Oncology, 25(3), 305–312. doi:10.​1097/​CCO.​0b013e32835ff3cb​ .PubMed
    14.Alix-Panabieres, C., & Pantel, K. (2014). Challenges in circulating tumour cell research. Nature Reviews Cancer, 14(9), 623–631. doi:10.​1038/​nrc3820 .CrossRef PubMed
    15.Haber, D. A., & Velculescu, V. E. (2014). Blood-based analyses of cancer: circulating tumor cells and circulating tumor DNA. Cancer Discovery, 4(6), 650–661. doi:10.​1158/​2159-8290.​CD-13-1014 .CrossRef PubMed PubMedCentral
    16.Krebs, M. G., Metcalf, R. L., Carter, L., Brady, G., Blackhall, F. H., & Dive, C. (2014). Molecular analysis of circulating tumour cells-biology and biomarkers. Nature Reviews. Clinical Oncology, 11(3), 129–144. doi:10.​1038/​nrclinonc.​2013.​253 .CrossRef PubMed
    17.Lianidou, E. S., Mavroudis, D., & Georgoulias, V. (2013). Clinical challenges in the molecular characterization of circulating tumour cells in breast cancer. British Journal of Cancer, 108(12), 2426–2432. doi:10.​1038/​bjc.​2013.​265 .CrossRef PubMed PubMedCentral
    18.Klein, C. A. (2009). Parallel progression of primary tumours and metastases. Nature Reviews Cancer, 9(4), 302–312. doi:10.​1038/​nrc2627 .CrossRef PubMed
    19.Grade, M., Becker, H., Liersch, T., Ried, T., & Ghadimi, B. M. (2006). Molecular cytogenetics: genomic imbalances in colorectal cancer and their clinical impact. Cellular Oncology The Official Journal of the International Society for Cellular Oncology, 28(3), 71–84.PubMed PubMedCentral
    20.Bruin, S. C., Klijn, C., Liefers, G. J., Braaf, L. M., Joosse, S. A., van Beers, E. H., et al. (2010). Specific genomic aberrations in primary colorectal cancer are associated with liver metastases. BMC Cancer, 10, 662. doi:10.​1186/​1471-2407-10-662 .CrossRef PubMed PubMedCentral
    21.Pantel, K., Deneve, E., Nocca, D., Coffy, A., Vendrell, J. P., Maudelonde, T., et al. (2012). Circulating epithelial cells in patients with benign colon diseases. Clinical Chemistry, 58(5), 936–940. doi:10.​1373/​clinchem.​2011.​175570 .CrossRef PubMed
    22.Pantel, K., & Brakenhoff, R. H. (2004). Dissecting the metastatic cascade. Nature Reviews Cancer, 4(6), 448–456. doi:10.​1038/​nrc1370 .CrossRef PubMed
    23.Weigelt, B., Glas, A. M., Wessels, L. F., Witteveen, A. T., Peterse, J. L., & Veer, L. J. (2003). Gene expression profiles of primary breast tumors maintained in distant metastases. Proceedings of the National Academy of Sciences of the United States of America, 100(26), 15901–15905. doi:10.​1073/​pnas.​2634067100 .CrossRef PubMed PubMedCentral
    24.Weigelt, B., Hu, Z., He, X., Livasy, C., Carey, L. A., Ewend, M. G., et al. (2005). Molecular portraits and 70-gene prognosis signature are preserved throughout the metastatic process of breast cancer. Cancer Research, 65(20), 9155–9158. doi:10.​1158/​0008-5472.​CAN-05-2553 .CrossRef PubMed
    25.Shah, S. P., Morin, R. D., Khattra, J., Prentice, L., Pugh, T., Burleigh, A., et al. (2009). Mutational evolution in a lobular breast tumour profiled at single nucleotide resolution. Nature, 461(7265), 809–813. doi:10.​1038/​nature08489 .CrossRef PubMed
    26.Schmidt-Kittler, O., Ragg, T., Daskalakis, A., Granzow, M., Ahr, A., Blankenstein, T. J., et al. (2003). From latent disseminated cells to overt metastasis: genetic analysis of systemic breast cancer progression. Proceedings of the National Academy of Sciences of the United States of America, 100(13), 7737–7742. doi:10.​1073/​pnas.​1331931100 .CrossRef PubMed PubMedCentral
    27.Weckermann, D., Polzer, B., Ragg, T., Blana, A., Schlimok, G., Arnholdt, H., et al. (2009). Perioperative activation of disseminated tumor cells in bone marrow of patients with prostate cancer. Journal of Clinical Oncology Official Journal of the American Society of Clinical Oncology, 27(10), 1549–1556. doi:10.​1200/​JCO.​2008.​17.​0563 .CrossRef PubMed
    28.Husemann, Y., Geigl, J. B., Schubert, F., Musiani, P., Meyer, M., Burghart, E., et al. (2008). Systemic spread is an early step in breast cancer. Cancer Cell, 13(1), 58–68. doi:10.​1016/​j.​ccr.​2007.​12.​003 .CrossRef PubMed
    29.Rhim, A. D., Mirek, E. T., Aiello, N. M., Maitra, A., Bailey, J. M., McAllister, F., et al. (2012). EMT and dissemination precede pancreatic tumor formation. Cell, 148(1–2), 349–361. doi:10.​1016/​j.​cell.​2011.​11.​025 .CrossRef PubMed PubMedCentral
    30.Kang, Y., & Pantel, K. (2013). Tumor cell dissemination: emerging biological insights from animal models and cancer patients. Cancer Cell, 23(5), 573–581. doi:10.​1016/​j.​ccr.​2013.​04.​017 .CrossRef PubMed PubMedCentral
    31.Stoecklein, N. H., & Klein, C. A. (2010). Genetic disparity between primary tumours, disseminated tumour cells, and manifest metastasis. International Journal of Cancer/Journal International du cancer, 126(3), 589–598. doi:10.​1002/​ijc.​24916 .CrossRef PubMed
    32.Horlings, H. M., Lai, C., Nuyten, D. S., Halfwerk, H., Kristel, P., van Beers, E., et al. (2010). Integration of DNA copy number alterations and prognostic gene expression signatures in breast cancer patients. Clinical Cancer Research An Official Journal of the American Association for Cancer Research, 16(2), 651–663. doi:10.​1158/​1078-0432.​CCR-09-0709 .CrossRef PubMed
    33.Joosse, S. A. (2012). BRCA1 and BRCA2: a common pathway of genome protection but different breast cancer subtypes. Nature Reviews Cancer, 12(5), 372. doi:10.​1038/​nrc3181-c2 . author reply.CrossRef PubMed
    34.Joosse, S. A., Brandwijk, K. I., Mulder, L., Wesseling, J., Hannemann, J., & Nederlof, P. M. (2011). Genomic signature of BRCA1 deficiency in sporadic basal-like breast tumors. Genes, Chromosomes & Cancer, 50(2), 71–81. doi:10.​1002/​gcc.​20833 .CrossRef
    35.Lim, E., Vaillant, F., Wu, D., Forrest, N. C., Pal, B., Hart, A. H., et al. (2009). Aberrant luminal progenitors as the candidate target population for basal tumor development in BRCA1 mutation carriers. Nature Medicine, 15(8), 907–913. doi:10.​1038/​nm.​2000 .CrossRef PubMed
    36.Molyneux, G., Geyer, F. C., Magnay, F. A., McCarthy, A., Kendrick, H., Natrajan, R., et al. (2010). BRCA1 basal-like breast cancers originate from luminal epithelial progenitors and not from basal stem cells. Cell Stem Cell, 7(3), 403–417. doi:10.​1016/​j.​stem.​2010.​07.​010 .CrossRef PubMed
    37.Zahl, P. H., Maehlen, J., & Welch, H. G. (2008). The natural history of invasive breast cancers detected by screening mammography. Archives of Internal Medicine, 168(21), 2311–2316. doi:10.​1001/​archinte.​168.​21.​2311 .CrossRef PubMed
    38.Stella, G. M., Senetta, R., Cassenti, A., Ronco, M., & Cassoni, P. (2012). Cancers of unknown primary origin: current perspectives and future therapeutic strategies. Journal of Translational Medicine, 10, 12. doi:10.​1186/​1479-5876-10-12 .CrossRef PubMed PubMedCentral
    39.Suzuki, M., Mose, E. S., Montel, V., & Tarin, D. (2006). Dormant cancer cells retrieved from metastasis-free organs regain tumorigenic and metastatic potency. The American Journal of Pathology, 169(2), 673–681. doi:10.​2353/​ajpath.​2006.​060053 .CrossRef PubMed PubMedCentral
    40.Tarin, D. (2012). Clinical and biological implications of the tumor microenvironment. Cancer Microenvironment, 5(2),95–112. doi: 10.​1007/​s12307-012-0099-6 .
    41.Pantel, K., Schlimok, G., Braun, S., Kutter, D., Lindemann, F., Schaller, G., et al. (1993). Differential expression of proliferation-associated molecules in individual micrometastatic carcinoma cells. Journal of the National Cancer Institute, 85(17), 1419–1424.CrossRef PubMed
    42.Janni, W., Vogl, F. D., Wiedswang, G., Synnestvedt, M., Fehm, T., Juckstock, J., et al. (2011). Persistence of disseminated tumor cells in the bone marrow of breast cancer patients predicts increased risk for relapse—a European pooled analysis. Clinical Cancer Research An Official Journal of the American Association for Cancer Research, 17(9), 2967–2976. doi:10.​1158/​1078-0432.​CCR-10-2515 .CrossRef PubMed
    43.Paget, S. (1989). The distribution of secondary growths in cancer of the breast, 1889. Cancer Metastasis Reviews, 8(2), 98–101.PubMed
    44.Yumoto, K., Eber, M. R., Berry, J. E., Taichman, R. S., & Shiozawa, Y. (2014). Molecular pathways: niches in metastatic dormancy. Clinical Cancer Research An Official Journal of the American Association for Cancer Research, 20(13), 3384–3389. doi:10.​1158/​1078-0432.​CCR-13-0897 .CrossRef PubMed PubMedCentral
    45.Braun, S., Kentenich, C., Janni, W., Hepp, F., de Waal, J., Willgeroth, F., et al. (2000). Lack of effect of adjuvant chemotherapy on the elimination of single dormant tumor cells in bone marrow of high-risk breast cancer patients. Journal of Clinical Oncology Official Journal of the American Society of Clinical Oncology, 18(1), 80–86.PubMed
    46.Braun, S., Vogl, F. D., Naume, B., Janni, W., Osborne, M. P., Coombes, R. C., et al. (2005). A pooled analysis of bone marrow micrometastasis in breast cancer. The New England Journal of Medicine, 353(8), 793–802. doi:10.​1056/​NEJMoa050434 .CrossRef PubMed
    47.Sanger, N., Effenberger, K. E., Riethdorf, S., Van Haasteren, V., Gauwerky, J., Wiegratz, I., et al. (2011). Disseminated tumor cells in the bone marrow of patients with ductal carcinoma in situ. International Journal of Cancer/Journal International du cancer, 129(10), 2522–2526. doi:10.​1002/​ijc.​25895 .CrossRef PubMed
    48.Solakoglu, O., Maierhofer, C., Lahr, G., Breit, E., Scheunemann, P., Heumos, I., et al. (2002). Heterogeneous proliferative potential of occult metastatic cells in bone marrow of patients with solid epithelial tumors. Proceedings of the National Academy of Sciences of the United States of America, 99(4), 2246–2251. doi:10.​1073/​pnas.​042372199 .CrossRef PubMed PubMedCentral
    49.Meng, S., Tripathy, D., Frenkel, E. P., Shete, S., Naftalis, E. Z., Huth, J. F., et al. (2004). Circulating tumor cells in patients with breast cancer dormancy. Clinical Cancer Research An Official Journal of the American Association for Cancer Research, 10(24), 8152–8162. doi:10.​1158/​1078-0432.​CCR-04-1110 .CrossRef PubMed
    50.Tabassum, D. P., & Polyak, K. (2015). Tumorigenesis: it takes a village. Nature Reviews Cancer, 15(8), 473–483. doi:10.​1038/​nrc3971 .CrossRef PubMed
    51.Navin, N. E., & Hicks, J. (2010). Tracing the tumor lineage. Molecular Oncology, 4(3), 267–283. doi:10.​1016/​j.​molonc.​2010.​04.​010 .CrossRef PubMed PubMedCentral
    52.Navin, N., Kendall, J., Troge, J., Andrews, P., Rodgers, L., McIndoo, J., et al. (2011). Tumour evolution inferred by single-cell sequencing. Nature, 472(7341), 90–94. doi:10.​1038/​nature09807 .CrossRef PubMed PubMedCentral
    53.De Roock, W., Claes, B., Bernasconi, D., De Schutter, J., Biesmans, B., Fountzilas, G., et al. (2010). Effects of KRAS, BRAF, NRAS, and PIK3CA mutations on the efficacy of cetuximab plus chemotherapy in chemotherapy-refractory metastatic colorectal cancer: a retrospective consortium analysis. The Lancet Oncology, 11(8), 753–762. doi:10.​1016/​S1470-2045(10)70130-3 .CrossRef PubMed
    54.Hannemann, J., Meyer-Staeckling, S., Kemming, D., Alpers, I., Joosse, S. A., Pospisil, H., et al. (2011). Quantitative high-resolution genomic analysis of single cancer cells. PLoS ONE, 6(11), e26362. doi:10.​1371/​journal.​pone.​0026362 .CrossRef PubMed PubMedCentral
    55.Gasch, C., Bauernhofer, T., Pichler, M., Langer-Freitag, S., Reeh, M., Seifert, A. M., et al. (2013). Heterogeneity of epidermal growth factor receptor status and mutations of KRAS/PIK3CA in circulating tumor cells of patients with colorectal cancer. Clinical Chemsistry, 59(1), 252–260. doi:10.​1373/​clinchem.​2012.​188557 .CrossRef
    56.Maley, C. C., Galipeau, P. C., Finley, J. C., Wongsurawat, V. J., Li, X., Sanchez, C. A., et al. (2006). Genetic clonal diversity predicts progression to esophageal adenocarcinoma. Nature Genetics, 38(4), 468–473. doi:10.​1038/​ng1768 .CrossRef PubMed
    57.Notta, F., Mullighan, C. G., Wang, J. C., Poeppl, A., Doulatov, S., Phillips, L. A., et al. (2011). Evolution of human BCR-ABL1 lymphoblastic leukaemia-initiating cells. Nature, 469(7330), 362–367. doi:10.​1038/​nature09733 .CrossRef PubMed
    58.Almendro, V., Cheng, Y. K., Randles, A., Itzkovitz, S., Marusyk, A., Ametller, E., et al. (2014). Inference of tumor evolution during chemotherapy by computational modeling and in situ analysis of genetic and phenotypic cellular diversity. Cell Reports, 6(3), 514–527. doi:10.​1016/​j.​celrep.​2013.​12.​041 .CrossRef PubMed PubMedCentral
    59.Marusyk, A., Tabassum, D. P., Altrock, P. M., Almendro, V., Michor, F., & Polyak, K. (2014). Non-cell-autonomous driving of tumour growth supports sub-clonal heterogeneity. Nature, 514(7520), 54–58. doi:10.​1038/​nature13556 .CrossRef PubMed PubMedCentral
    60.Calbo, J., van Montfort, E., Proost, N., van Drunen, E., Beverloo, H. B., Meuwissen, R., et al. (2011). A functional role for tumor cell heterogeneity in a mouse model of small cell lung cancer. Cancer Cell, 19(2), 244–256. doi:10.​1016/​j.​ccr.​2010.​12.​021 .CrossRef PubMed
    61.Cayrefourcq, L., Mazard, T., Joosse, S., Solassol, J., Ramos, J., Assenat, E., et al. (2015). Establishment and characterization of a cell line from human circulating colon cancer cells. Cancer Research, 75(5), 892–901. doi:10.​1158/​0008-5472.​CAN-14-2613 .CrossRef PubMed
    62.Aceto, N., Bardia, A., Miyamoto, D. T., Donaldson, M. C., Wittner, B. S., Spencer, J. A., et al. (2014). Circulating tumor cell clusters are oligoclonal precursors of breast cancer metastasis. Cell, 158(5), 1110–1122. doi:10.​1016/​j.​cell.​2014.​07.​013 .CrossRef PubMed PubMedCentral
    63.Kreso, A., O’Brien, C. A., van Galen, P., Gan, O. I., Notta, F., Brown, A. M., et al. (2013). Variable clonal repopulation dynamics influence chemotherapy response in colorectal cancer. Science, 339(6119), 543–548. doi:10.​1126/​science.​1227670 .CrossRef PubMed
    64.Pao, W., Miller, V. A., Politi, K. A., Riely, G. J., Somwar, R., Zakowski, M. F., et al. (2005). Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. PLoS Medicine, 2(3), e73. doi:10.​1371/​journal.​pmed.​0020073 .CrossRef PubMed PubMedCentral
    65.Heitzer, E., Auer, M., Gasch, C., Pichler, M., Ulz, P., Hoffmann, E. M., et al. (2013). Complex tumor genomes inferred from single circulating tumor cells by array-CGH and next-generation sequencing. Cancer Research, 73(10), 2965–2975. doi:10.​1158/​0008-5472.​CAN-12-4140 .CrossRef PubMed
    66.Wu, C. C., Maher, M. M., & Shepard, J. A. (2011). Complications of CT-guided percutaneous needle biopsy of the chest: prevention and management. AJR. American Journal of Roentgenology, 196(6), W678–W682. doi:10.​2214/​AJR.​10.​4659 .CrossRef PubMed
    67.Bednarz-Knoll, N., Alix-Panabieres, C., & Pantel, K. (2012). Plasticity of disseminating cancer cells in patients with epithelial malignancies. Cancer Metastasis Reviews, 31(3–4), 673–687. doi:10.​1007/​s10555-012-9370-z .CrossRef PubMed
    68.Yu, M., Bardia, A., Wittner, B. S., Stott, S. L., Smas, M. E., Ting, D. T., et al. (2013). Circulating breast tumor cells exhibit dynamic changes in epithelial and mesenchymal composition. Science, 339(6119), 580–584. doi:10.​1126/​science.​1228522 .CrossRef PubMed PubMedCentral
    69.Guzvic, M., Braun, B., Ganzer, R., Burger, M., Nerlich, M., Winkler, S., et al. (2014). Combined genome and transcriptome analysis of single disseminated cancer cells from bone marrow of prostate cancer patients reveals unexpected transcriptomes. Cancer Research, 74(24), 7383–7394. doi:10.​1158/​0008-5472.​CAN-14-0934 .CrossRef PubMed
    70.Miyamoto, D. T., Zheng, Y., Wittner, B. S., Lee, R. J., Zhu, H., Broderick, K. T., et al. (2015). RNA-Seq of single prostate CTCs implicates noncanonical Wnt signaling in antiandrogen resistance. Science, 349(6254), 1351–1356. doi:10.​1126/​science.​aab0917 .CrossRef PubMed
    71.Miyamoto, D. T., Lee, R. J., Stott, S. L., Ting, D. T., Wittner, B. S., Ulman, M., et al. (2012). Androgen receptor signaling in circulating tumor cells as a marker of hormonally responsive prostate cancer. Cancer Discovery, 2(11), 995–1003. doi:10.​1158/​2159-8290.​CD-12-0222 .CrossRef PubMed PubMedCentral
    72.Almendro, V., Kim, H. J., Cheng, Y. K., Gonen, M., Itzkovitz, S., Argani, P., et al. (2014). Genetic and phenotypic diversity in breast tumor metastases. Cancer Research, 74(5), 1338–1348. doi:10.​1158/​0008-5472.​CAN-13-2357-T .CrossRef PubMed PubMedCentral
  • 作者单位:Simon A. Joosse (1)
    Klaus Pantel (1)

    1. Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
  • 刊物类别:Medicine
  • 刊物主题:Medicine & Public Health
    Oncology
    Cancer Research
  • 出版者:Springer Netherlands
  • ISSN:1573-7233
文摘
Metastatic relapse in patients with solid tumors is the consequence of cancer cells that disseminated to distant sites, adapted to the new microenvironment, and escaped systemic adjuvant therapy. There is increasing evidence that hematogeneous dissemination starts at an early stage of cancer progression with single tumor cells or cell clusters leaving the primary site and entering the blood circulation. These circulating tumor cells (CTCs) can extravasate into secondary tissues where they become disseminated tumor cells (DTCs). Patients might relapse years after initial resection of the primary tumor when DTCs become overt metastases. Current diagnostic strategies for stratification of therapies against metastatic cells focus on the primary tumor tissue. This approach is based on the availability of stored primary tumors obtained at primary surgery, but it ignores that the DTCs might have evolved over years, which can affect the antimetastatic drug response. However, taking biopsies from metastatic tissues is an invasive procedure, and multiple metastases located at different sites in an individual patient show marked genomic heterogeneity. Thus, capturing CTCs from the peripheral blood as a “liquid biopsy” has obvious advantages in particular when repeated sampling is required for monitoring therapies in cancer patients. However, the biology behind tumor cell dissemination and its contribution to metastatic progression in cancer patients is still subject to controversial discussions. This manuscript reviews current theories on the genetic traits behind the spread of CTCs and progression of DTCs into overt metastases.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700