Influence of the grain boundary character on the temperature of transition to complete wetting in the Cu–In system
详细信息    查看全文
  • 作者:Alexander B. Straumal ; Victoria A. Yardley…
  • 刊名:Journal of Materials Science
  • 出版年:2015
  • 出版时间:July 2015
  • 年:2015
  • 卷:50
  • 期:13
  • 页码:4762-4771
  • 全文大小:1,841 KB
  • 参考文献:1.German RM, Suri P, Park SJ (2009) Review: liquid phase sintering. J Mater Sci 44:1-9. doi:10.-007/?s10853-008-3008-0 View Article <br>2.Ross D, Bonn D, Meunier J (1999) Observation of short-range critical wetting. Nature 400:737-39. doi:10.-038/-3425 View Article <br>3.Watson EB (1982) Melt infiltration and magma evolution. Geology 10:236-40. doi:10.-130/-091-7613(1982)10<236:?MIAME>2.-.?CO;2 View Article <br>4.Laporte D, Watson E (1995) Experimental and theoretical constraints on melt distribution in crustal sources: the effect of crystalline anisotropy on melt interconnectivity. Chem Geol 124:161-84. doi:10.-016/-009-2541(95)00052-N View Article <br>5.Straumal B, Gust W (1996) Lines of grain boundary phase transitions in bulk phase diagrams. Mater Sci Forum 207-09:59-8. doi:10.-028/?www.?scientific.?net/?MSF.-07-209.-9 View Article <br>6.Straumal B, Gust W, Watanabe T (1999) Tie lines of the grain boundary wetting phase transition in the Zn-rich part of the Zn–Sn phase diagram. Mater Sci Forum 294-96:411-14. doi:10.-028/?www.?scientific.?net/?MSF.-94-296.-11 View Article <br>7.Cahn JW (1977) Critical point wetting. J Chem Phys 66:3667-672. doi:10.-063/-.-34402 View Article <br>8.Ebner C, Saam W (1977) New phase-transition phenomena in thin argon films. Phys Rev Lett 38:1486-489. doi:10.-103/?PhysRevLett.-8.-486 View Article <br>9.Polyakov SA, Straumal BB, Mittemeijer EJ (2006) Temperature influence on the faceting of Σ3 and Σ9 grain boundaries in Cu. Acta Mater 54:167-72. doi:10.-016/?j.?actamat.-005.-8.-37 View Article <br>10.Sch?lhammer J, Baretzky B, Gust W, Mittemeijer E, Straumal B (2001) Grain boundary grooving as an indicator of grain boundary phase transformations. Interface Sci 9:43-3. doi:10.-023/?A:-011266729152 View Article <br>11.Straumal BB, Polyakov SA, Bischoff E, Gust W, Mittemeijer EJ (2001) Faceting of Σ3 and Σ9 grain boundaries in copper. Interface Sci 9:287-92. doi:10.-023/?A:-015174921561 View Article <br>12.Straumal BB, Klinger LM, Shvindlerman LS (1984) The effect of crystallographic parameters of interphase boundaries on their surface tension and parameters of the boundary diffusion. Acta Metall 32:1355-364. doi:10.-016/-001-6160(84)90081-6 View Article <br>13.Straumal AB, Bokstein BS, Petelin AL, Straumal BB, Baretzky B, Rodin AO, Nekrasov AN (2012) Apparently complete grain boundary wetting in Cu–In alloys. J Mater Sci 47:8336-343. doi:10.-007/?s10853-012-6773-8 View Article <br>14.Kucheev YO, Straumal AB, Mogil’nikova IV, Straumal BB, Gusak AM, Baretzky B (2012) Wetting of grain boundaries in hard-magnetic Nd–Fe–B alloys. Russ J Non-Ferr Met 53:450-56. doi:10.-103/?S106782121206003?X View Article <br>15.Kogtenkova OA, Straumal BB, Protasova SG, Gornakova AS, Zi?ba P, Czeppe T (2012) Effect of the wetting of grain boundaries on the formation of a solid solution in the Al–Zn system. JETP Lett 96:380-84. doi:10.-134/?S002136401218006- View Article <br>16.Straumal BB, Kucheev YO, Efron LI, Petelin AL, Majumdar JD, Manna I (2012) Complete and incomplete wetting of ferrite grain boundaries by austenite in the low-alloyed ferritic steel. J Mater Eng Perform 21:667-70. doi:10.-007/?s11665-012-0130-6 View Article <br>17.Straumal BB, Kucheev YO, Yatskovskaya IL, Mogilnikova IV, Schütz G, Nekrasov AN, Baretzky B (2012) Grain boundary wetting in the NdFeB-based hard magnetic alloys. J Mater Sci 47:8352-359. doi:10.-007/?s10853-012-6618-5 View Article <br>18.Straumal BB, Gornakova AS, Kucheev YO, Baretzky B, Nekrasov AN (2012) Grain boundary wetting by a second solid phase in the Zr–Nb alloys. J Mater Eng Perform 21:721-24. doi:10.-007/?s11665-012-0158-7 View Article <br>19.Wynblatt P, Takashima M (2001) Correlation of grain boundary character with wetting behaviour. Interface Sci 9:265-73. doi:10.-023/?A:-015162929100 View Article <br>20.Wynblatt P, Takashima M (2001) An empirical model of grain boundary energy and its application to grain boundary wetting. Trans JWRI 30:11-1<br>21.Felberbaum L, Rossoll A, Mortensen A (2005) A stereoscopic method for dihedral angle measurement. J Mater Sci 40:3121-127. doi:10.-007/?s10853-005-2673-5 View Article <br>22.Empl D, Felberbaum L, Laporte V, Chatain D, Mortensen A (2009) Dihedral angles in Cu-?wt% Pb: grain boundary energy and grain boundary triple line effects. Acta Mater 57:2527-537. doi:10.-016/?j.?actamat.-009.-2.-09 View Article <br>23.Kronberg ML, Wilson FH (1949) Secondary recrystallization in copper. Trans AIME 185:501-14<br>24.Brandon D (1966) The structure of high-angle grain boundaries. Acta Metall 14:1479-484. doi:10.-016/-001-6160(66)90168-4 View Article <br>25.Shvindlerman L, Straumal B (1985) Regions of existence of special and non-special grain boundaries. Acta Metall 33:1735-749. doi:10.-016/-001-6160(85)90168-3 View Article <br>26.Straumal B, Muschik T, Gust W, Predel B (1992) The wetting transition in high and low energy grain boundaries in the
  • 作者单位:Alexander B. Straumal (1) (2) <br> Victoria A. Yardley (3) <br> Boris B. Straumal (1) (2) (4) <br> Alexei O. Rodin (2) <br><br>1. Institute of Solid State Physics, Russian Academy of Sciences, Ac. Ossipyan str. 2, 142432, Chernogolovka, Russia <br> 2. National University of Science and Technology MISiS, Leninskii prosp. 4, 119049, Moscow, Russia <br> 3. Ruhr-Universit?t Bochum, Universit?tsstr. 150, 44801, Bochum, Germany <br> 4. Moscow Institute of Physics and Technology (State University), Institutskii per. 9, 141700, Dolgoprudny, Russia <br>
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry<br>Materials Science<br>Characterization and Evaluation Materials<br>Polymer Sciences<br>Continuum Mechanics and Mechanics of Materials<br>Crystallography<br>Mechanics<br>
  • 出版者:Springer Netherlands
  • ISSN:1573-4803
文摘
The incomplete to complete grain boundary (GB) wetting transition is controlled by GB energy and, therefore, by GB character. To find the GB character dependence of the wetting transition, experiments were carried out on polycrystalline Cu–In alloys, which are known to exhibit wetting behaviour between 715 and 986?°C. Electron backscatter diffraction was applied to determine the two-dimensional GB character, using the coincidence site lattice (CSL) model and applying the Brandon criterion. Special wetting behaviour was found in those GBs characterised as low-angle, Σ3 and Σ11. The low-angle and Σ3 GBs were not wetted until the sample melted, while the temperature for the transition to complete wetting of Σ11 GBs was over 100?°C higher than that for complete wetting of all other types of GB, including other CSL GB as well as random GB. It might be that a different Brandon type criterion is needed in the case of GB wetting to show the “special-wetting behaviour of the CSL GBs.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700