Frictional strength and heat flow of southern San Andreas Fault
详细信息    查看全文
  • 作者:P. P. Zhu
  • 关键词:Frictional strength ; Heat flow ; Southern San Andreas Fault ; Shear stress ; Normal stress ; Friction stress ; Friction coefficient ; Fault friction heat ; Slip rate
  • 刊名:Journal of Seismology
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:20
  • 期:1
  • 页码:291-304
  • 全文大小:593 KB
  • 参考文献:Brune JN, Henry TL, Roy RF (1969) Heat flow, stress, and rate of slip along the San Andreas fault, California. J Geophys Res 74:3821鈥?827CrossRef
    Byerlee JD (1978) Frictions of rocks. Pure Appl Geophys 116:615鈥?29CrossRef
    Carpenter BM, Saffer DM, Marone C (2012) Frictional properties and sliding stability of the San Andreas fault from deep drill core. Geology 40:759鈥?62. doi:10.鈥?130/鈥婫33007 CrossRef
    Ch茅ry J, Zoback MD, Hassani R (2001) An integrated mechanical model of the San Andreas Fault in central and northern California. J Geophys Res 106(B10):22051鈥?2066. doi:10.鈥?029/鈥?001JB000382 CrossRef
    Ch茅ry J, Zoback MD, Hickman S (2004) A mechanical model of the San Andreas fault and SAFOD Pilot Hole stress measurements. Geophys Res Lett 31:L15S13. doi:10.鈥?029/鈥?004GL019521 CrossRef
    Delan JF, Bowman DD, Sammis CG (2007) Long-range and long-term fault interactions in Southern California. Geology 35(9):855鈥?58. doi:10.鈥?130/鈥婫23789A.鈥? CrossRef
    Di Toro G, Han R, Hirose T, Nirose T, De Raola N, Nielsen G, Mizoguchi K, Ferri F, Cocco M, Shimamoto T (2011) Fault lubrication during earthquakes. Nature 471:494鈥?98. doi:10.鈥?038/鈥媙ature09838 CrossRef
    Dough DI, Dough WL (1987) Stress near the surface of earth. Annu Rev Earth Planet Sci 15:545鈥?66. doi:10.鈥?146/鈥媋nnurev.鈥媏a.鈥?5.鈥?50187.鈥?02553 CrossRef
    Fay N, Humphreys E (2006) Dynamics of the Salton blocks: absolute fault strength and crust-mantle coupling in Southern California. Geology 34(4):261鈥?64CrossRef
    Fialko Y, Rivera L, Kanamori H (2005) Estimate of differential stress in the upper crust from variations in topography and strike along the San Andreas fault. Geophys J Int 160(2):527鈥?32CrossRef
    Fulton PM, Saffer DM, Harris RN, Bekins BA (2004) Re-evaluation of heat flow data near Parkfield, CA: evidence for a weak San Andreas Fault. Geophys Res Lett 31:L15S15. doi:10.鈥?029/鈥?003GL019378 CrossRef
    Grantz A, Dickinson WR (1968) Indicated cumulative offsets along the San Andreas ult fault in the California Coast Ranges. In: Dickinson WR, Grantz A (eds) Proceedings f of conference on geologic problems of San Andreas fault system, vol 11. Stanford University Publications in the Geological Sciences, Stanford, pp 117鈥?20
    Hamamoto H, Yamano M, Goto S (2005) Heat flow measurement in shallow seas through long-term temperature monitoring. Geophys Res Lett 32:L21311. doi:10.鈥?029/鈥?005GL024138 CrossRef
    Hardebeck JL, Hauksson E (2001) Crustal stress field in southern California and its implications for fault mechanics. J Geophys Res 106(B10):21859鈥?1882CrossRef
    Henrys SA, Ellis S, Uruski C (2003) Conductive heat flow variations from bottom- simulating reflectors on the Hikurangi margin, New Zealand. Geophys Res Lett 30:1065. doi:10.鈥?029/鈥?002GL015772 CrossRef
    Herbert JW, Cooke ML, Oskin M, Difo O (2013) How much can off-fault deformation contribute to the slip rate discrepancy within the eastern California shear zone? Geology 42(1):71鈥?5. doi:10.鈥?130/鈥婫34738.鈥? CrossRef
    Hickman S, Zoback M (2004) Stress orientations and magnitudes in the SAFOD pilot hole. Geophys Res Lett 31:L15S12. doi:10.鈥?029/鈥?004GL020043
    Hou L, Ma S, Shimamoto T, Chen J, Yao L, Yang X, Okimura Y (2012) Internal structures and high-velocity frictional properties of a bedding-parallel carbonate fault at Xiaojiaqiao outcrop activated by the 2008 Wenchuan earthquake. Earthq Sci 25(3):197鈥?17CrossRef
    Ikari MJ, Niemeijer AR, Marone C (2011) The role of fault zone fabric and lithification state on frictional strength, constitutive behavior, and deformation microstructure. J Geophys Res 116:B08404. doi:10.鈥?029/鈥?011JB008264
    Jaeger JC (1956) Elasticity, Fracture, and Flow. John Wiley, New York
    Johnson KM (2013a) Is stress accumulating on the creeping section of the San Andreas fault? Geophys Res Lett 40:6101鈥?105. doi:10.鈥?002/鈥?013GL058184 CrossRef
    Johnson KM (2013b) Slip rates and off-fault deformation in Southern California inferred from GPS data and models. J Geophys Res Solid Earth 118:5643鈥?664. doi:10.鈥?002/鈥媕grb.鈥?0365 CrossRef
    Jost ML, B眉脽elberg T, Jost O, Harjes H (1998) Source parameters of injection- induced micro-earthquakes at 9 km depth at the KTB Deep Drilling site, Germany. Bull Seismol Soc Am 88(3):815鈥?32
    Keys WS, Wolff RG, Bredehoeft JD, Shuter E, Healy JH (1979) In situ stress measurements near the San Andreas fault in Central California. J Geophys Res 84(B4):1583鈥?591CrossRef
    Kohli AH, Zoback MD (2013) Frictional properties of shale reservoir rocks. J Geophys Res Solid Earth 118:5109鈥?125. doi:10.鈥?002/鈥媕grb.鈥?0346 CrossRef
    Lachenbruch AH (1986) Simple models for the estimation and measurement of frictional heating by an earthquake. U S Geol Surv Open File Rep 86鈥?08, 13p
    Lachenbruch AH, McGarr A (1990) Chapter 10: stress and heat flow. In: Wallace RE (ed) The San Andreas Fault System, California, US Geological Survey, Professional Paper 1515. Or http://鈥?dparks.鈥媤r.鈥媢sgs.鈥媑ov/鈥媝p1515/鈥媍hapter10.鈥媓tml (2009)
    Lachenbruch AH, Sass JH (1980) Heat flow and energetics of the San Andreas Fault Zone. J Geophys Res 85:6185鈥?222CrossRef
    Li Q, Tullis TE, Goldsby D, Carpick RW (2013) Frictional ageing from interfacial bonding and the origins of rate and state friction. Nature 480:233鈥?36. doi:10.鈥?038/鈥媙ature10589 CrossRef
    Lockner DA, Okubo PG (1983) Measurements of frictional heating in granite. J Geophys Res 88(B5):4313鈥?320CrossRef
    Lockner DA, Morrow D, Hickman S (2011) Low strength of San Andreas fault gouge from SAFOD core. Nature 472:82鈥?5. doi:10.鈥?038/鈥媙ature09927 CrossRef
    Matsuzawa T, Shibazaki B, Obara K, Hirose H (2013) Comprehensive model of short- and long-term slow slip events in the Shikoku region of Japan, incorporating a realistic plate configuration. Geophys Res Lett 40:5125鈥?130. doi:10.鈥?002/鈥媑rl.鈥?1006 CrossRef
    McGarr A (1999) On relating apparent stress to the stress causing earthquake fault slip. J Geophys Res 104(B2):3003鈥?011CrossRef
    McGarr A, Zoback MD, Hanks TC (1982) Implications of an elastic analysis of in situ stress measurements near the San Andreas fault. J Geophys Res 87:7797鈥?806CrossRef
    Morrow C, Radney B, Byerlee J (1992) Chapter 3 Frictional strength and the effective pressure law of montmorillonite and illite clays. In: Fault Mechanics and Transport Properties of Rocks. Academic Press. Or http://鈥媏arthquake.鈥媢sgs.鈥媑ov/鈥媟esearch/鈥媝hysics/鈥媗ab/鈥婩rictional_鈥媠trength.鈥媝df (2009)
    Mount V, Suppe J (1987) State of stress near the San Andreas fault: implications for wrench tectonics. Geology 15:1143鈥?146CrossRef
    Niemeijei AR, Collettini C (2013) Frictional properties of a low-angle normal fault under in situ conditions: thermally-activated velocity weakening. Pure Appl Geophys 170(12):2122鈥?133. doi:10.鈥?007/鈥媠00024-013-0759-6
    Plesch A, Shaw JH, Benson C, Bryant WA, Carena S, Cooke M, Dolan J, Fuis G, Gath E, Grant L, Hauksson E, Jordan T, Kamerling M et al (2007) Community Fault Model (CFM) for Southern California. Bull Seismol Soc Am 97:1793鈥?802. doi:10.鈥?785/鈥?120050211 CrossRef
    Popek MA, Saffer DM (2011) Heat advection by groundwater flow through a heterogeneous permeability crust: a potential cause of scatter in surface heat flow near Parkfield, California. J Geophys Res 116:B03404. doi:10.鈥?029/鈥?010JB008081
    Read T, Bour O, Bense V, Le Borgne T, Goderniaux P, Klepikova MV, Ochreutener R, Lavenant N, Boschero V (2013) Characterizing groundwater flow and heat transport in fractured rock using Fiber-Optic Distributed Temperature Sensing. Geophys Res Lett 40:2055鈥?059. doi:10.鈥?002/鈥媑rl.鈥?0397 CrossRef
    SAFOD (2008鈥?010) Please see San Andreas Fault Observatory at Depth conducted measurements and experiments in 2008鈥?010 at its web-site: http://鈥媤ww.鈥媠afod.鈥媍om
    Scholz CH (2000) Evidence for a strong San Andreas Fault. Geology 28(2):163鈥?66CrossRef
    Shcherbakov R, Goda K, Ivanian A, Atkinson GM (2013) Aftershock Statistics of Major Subduction Earthquakes. Bull Seismol Soc Am 103:3222鈥?234. doi:10.鈥?785/鈥?120120337 CrossRef
    Si J, Li H, Kuo L, Pei J, Song S, Wang H (2013) Clay mineral anomalies in the Yingxiu鈥揃eichuan fault zone from the WFSD-1 drilling core and its implication for the faulting mechanism during the 2008 Wenchuan earthquake (Mw 7.9), Tectonophysics, Available online 26 September 2013
    So B-D, Yuen DA (2013) Influences of temperature-dependent thermal conductivity on surface heat flow near major faults. Geophys Res Lett 40:3868鈥?872. doi:10.鈥?002/鈥媑rl.鈥?0780 CrossRef
    Townend J, Zoback M (2004) Regional tectonic stress near the San Andreas Fault in central and southern California. Geophys Res Lett 31:L15S11. doi:10.鈥?029/鈥?003GL018918 CrossRef
    Tsutsumi A, Fabbri O, Karpoff AM, Ujiie K, Tsuimoto A (2011) Friction velocity dependence of clay-rich fault material along a megasplay fault in the Nankai subduction zone at intermediate to high velocities. Geophys Res Lett 38:L19301. doi:10.鈥?029/鈥?011GL049314 CrossRef
    van der Woerd J, Klinger Y, Sieh K, Tapponnier P, Ryerson FJ, M茅riaux A-S (2006) Long-term slip rate of the southern San Andreas Fault from 10Be-26Al surface exposure dating of an offset alluvial fan. J Geophys Res 111:B04407. doi:10.鈥?029/鈥?004JB003559
    Venkataraman A, Kanamori H (2004) Observational constraints on the fracture energy of subduction zone earthquakes. J Geophys Res 109:B05302. doi:10.鈥?029/鈥?g003JB002549
    Verberne BA, Spiers CJ, Niemeijer AR, De Bresser LHP, De Winter DAM, Plumper O (2013) Frictional properties and microstructure of calcite-rich fault gouges sheared at sub-seismic sliding velocities. Pure Appl Geophys 170(12):2012鈥?035. doi:10.鈥?007/鈥媠00024-013-0760-0
    Wallace RE (1990), Chapter 1: general features. In: Wallace RE (ed) The San Andreas Fault System, California, US Geological Survey, Professional Paper 1515. Or http://鈥?dparks.鈥媤r.鈥媢sgs.鈥媑ov/鈥媝p1515/鈥媍hapter10.鈥媓tml (2009)
    Webb PC, Lee MK, Brown GC (1987) Heat flow - heat production relationships in the UK and the vertical distribution of heat production in granite batholiths. Geophys Res Lett 14(3):279鈥?82. doi:10.鈥?029/鈥婫L014i003p00279 CrossRef
    Williams CF, Grubb FV, Galanis SP Jr (2004) Heat flow in the SAFOD pilot hole and implications for the strength of the San Andreas Fault. Geophys Res Lett 31:L15S14. doi:10.鈥?029/鈥?003GL019352
    Zhang L, He C (2013) Frictional properties of natural gouges from Longmenshan fault zone ruptured during the Wenchuan Mw7.9 earthquake. Tectonophysics 5949(24):149鈥?64CrossRef
    Zhu PP (2013) Normal and shear stresses acting on arbitrarily oriented faults, earthquake energy, crustal GPE change and the coefficient of friction. J Seismol 17(3):985鈥?000. doi:10.鈥?007/鈥媠10950-013-9367-2 , http://鈥媗ink.鈥媠pringer.鈥媍om/鈥媋rticle/鈥?0.鈥?007%2Fs10950-013-9367-2 CrossRef
    Zoback MD, Healy JH (1992) In situ stress measurements to 3.5 km depth in the Cajon Pass scientific research borehole: implications for the mechanics of crustal faulting. J Geophys Res 97(B4):5039鈥?057CrossRef
    Zoback MD, Roller JC (1979) Magnitude of shear stress on the San Andreas Fault: implications of a stress measurement profile at shallow depth. Science 206:445鈥?47CrossRef
    Zoback MD, Healy JH, Roller JC (1977) Preliminary stress measurements in central California using the hydraulic fracturing technique. Pure Appl Geophys 115:135鈥?52CrossRef
    Zoback MD, Tsukahara H, Hickman SH (1980) Stress measurements at depth in the vicinity of the San Andreas Fault: implications for the magnitude of shear stress at depth. J Geophys Res 85(B11):6157鈥?173CrossRef
    Zoback MD, Zoback ML, Mount VS, Suppe J, Eaton JP, Healy JH, Oppenheimer DH, Reasenberg PA, Jones LM, Raleigh CB, Wong LG, Scotti O, Wentworth CM (1987) New evidence on the state of stress of the San Andreas Fault system. Science 228(4830):1105鈥?111CrossRef
    Zoback MD, Barton CA, Brudy M, Castillo DA, Finkbeiner T, Grollimund BR, Moos DB, Peska P, Ward CD, Wiprut DJ (2003) Determination of stress orientation and magnitude in deep wells. Int J Rock Mech Min Sci 40:1049鈥?076CrossRef
    Zoback MD, Hickman S, Ellsworth WE (2007) The role of fault zone drilling. In: Kanamori H, Schubert G (eds) Earthquake seismology: treatise on geophysics, vol 4. Elsevier, Amsterdam, pp 649鈥?74CrossRef
    Zoback MD, Hickman S, Ellsworth WL (2010) Scientific drilling into the San Andreas Fault. Trans Am Geophys Union 91(22):197鈥?04. doi:10.鈥?029/鈥?010EO220001 CrossRef
    Zoback MD, Hickman S, Ellsworth WL, and the SAFOD science team (2011) Scientific drilling into the San Andreas Fault zone鈥攁n overview of SAFOD鈥檚 first five years. Sci Drill 11:14鈥?8. doi:10.鈥?204/鈥媔odp.鈥媠d.鈥?1.鈥?2.鈥?011 CrossRef
  • 作者单位:P. P. Zhu (1)

    1. GEO Research Institute, Milpitas, CA, 95035, USA
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Earth sciences
    Geophysics and Geodesy
    Structural Geology
    Hydrogeology
    Geotechnical Engineering
  • 出版者:Springer Netherlands
  • ISSN:1573-157X
文摘
Frictional strength and heat flow of faults are two related subjects in geophysics and seismology. To date, the investigation on regional frictional strength and heat flow still stays at the stage of qualitative estimation. This paper is concentrated on the regional frictional strength and heat flow of the southern San Andreas Fault (SAF). Based on the in situ borehole measured stress data, using the method of 3D dynamic faulting analysis, we quantitatively determine the regional normal stress, shear stress, and friction coefficient at various seismogenic depths. These new data indicate that the southern SAF is a weak fault within the depth of 15 km. As depth increases, all the regional normal and shear stresses and friction coefficient increase. The former two increase faster than the latter. Regional shear stress increment per kilometer equals 5.75鈥壜扁€?.05 MPa/km for depth 鈮?5 km; regional normal stress increment per kilometer is equal to 25.3鈥壜扁€?.1 MPa/km for depth 鈮?5 km. As depth increases, regional friction coefficient increment per kilometer decreases rapidly from 0.08 to 0.01/km at depths less than ~3 km. As depth increases from ~3 to ~5 km, it is 0.01/km and then from ~5 to 15 km, and it is 0.002/km. Previously, frictional strength could be qualitatively determined by heat flow measurements. It is difficult to obtain the quantitative heat flow data for the SAF because the measured heat flow data exhibit large scatter. However, our quantitative results of frictional strength can be employed to investigate the heat flow in the southern SAF. We use a physical quantity P f to describe heat flow. It represents the dissipative friction heat power per unit area generated by the relative motion of two tectonic plates accommodated by off-fault deformation. P f is called 鈥渇ault friction heat.鈥?On the basis of our determined frictional strength data, utilizing the method of 3D dynamic faulting analysis, we quantitatively determine the regional long-term fault friction heat at various seismogenic depths in the southern SAF. The new data show that as depth increases, regional friction stress increases within the depth of 15 km; its increment per kilometer equals 5.75鈥壜扁€?.05 MPa/km. As depth increases, regional long-term fault friction heat increases; its increment per kilometer is equal to 3.68鈥壜扁€?.03 mW/m2/km. The values of regional long-term fault friction heat provided by this study are always lower than those from heat flow measurements. The difference between them and the scatter existing in the measured heat flow data are mainly caused by the following processes: (i) heat convection, (ii) heat advection, (iii) stress accumulation, (iv) seismic bursts between short-term lull periods in a long-term period, and (v) influence of seismicity in short-term periods upon long-term slip rate and heat flow. Fault friction heat is a fundamental parameter in research on heat flow. Keywords Frictional strength Heat flow Southern San Andreas Fault Shear stress Normal stress Friction stress Friction coefficient Fault friction heat Slip rate

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700