Statistical Shape Modeling Using Partial Least Squares: Application to the Assessment of Myocardial Infarction
详细信息    查看全文
  • 刊名:Lecture Notes in Computer Science
  • 出版年:2016
  • 出版时间:2016
  • 年:2016
  • 卷:9534
  • 期:1
  • 页码:130-139
  • 全文大小:1,479 KB
  • 参考文献:1.Hoogendoorn, C., Duchateau, N., Sánchez-Quintana, D., Whitmarsh, T., Sukno, F., De Craene, M., Lekadir, K., Frangi, A.: A high-resolution atlas and statistical model of the human heart from multislice CT. IEEE Trans. Med. Imaging 32(1), 28–44 (2013)CrossRef
    2.Hoogendoorn, C., Pashaei, A., Sebastian, R., Sukno, F.M., Cámara, O., Frangi, A.F.: Sensitivity analysis of mesh warping and subsampling strategies for generating large scale electrophysiological simulation data. In: Metaxas, D.N., Axel, L. (eds.) FIMH 2011. LNCS, vol. 6666, pp. 418–426. Springer, Heidelberg (2011)CrossRef
    3.Bosch, J.G., Nijland, F., Mitchell, S.C., Lelieveldt, B.P.F., Kamp, O., Sonka, M., Reiber, J.H.C.: Computer-aided diagnosis via model-based shape analysis: automated classification of wall motion abnormali-ties in echocardiograms. Acad. Radiol. 12(3), 358–367 (2005)CrossRef
    4.Zhao, F., Zhang, H., Wahle, A., Stolpen, A., Scholz, T., Sonka, M.: Congenital aortic disease: 4D magnetic resonance segmentation and quantitative analysis. Med. Image Anal. 13(3), 483–493 (2009)CrossRef
    5.Sjoestrand, K., Stegmann, M.B., Larsen, R.: Sparse principal component analysis in medical shape modeling. In: SPIE Medical Imaging: Image Processing (2006)
    6.Leung, K., Bosch, J.G.: Localized shape variations for classifying wall motion in echocardiograms. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007, Part I. LNCS, vol. 4791, pp. 52–59. Springer, Heidelberg (2007)CrossRef
    7.Lekadir, K., Keenan, N., Pennell, D., Yang, G.Z.: Shape-based myocardial contractility analysis using multivariate outlier detection. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007, Part II. LNCS, vol. 4792, pp. 834–841. Springer, Heidelberg (2007)CrossRef
    8.Lekadir, K., Keenan, N., Pennell, D., Yang, G.-Z.: An inter-landmark approach to 4-D shape extraction and interpretation: Application to myocardial motion assessment in MRI. IEEE Trans. Med. Imaging 30(1), 52–68 (2011)CrossRef
    9.Suinesiaputra, A., Frangi, A.F., Kaandorp, T., Lamb, H.J., Bax, J.J., Reiber, J., Lelieveldt, B.: Automated detection of regional wall motion abnormalities based on a statistical model applied to multislice short-axis cardiac MR images. IEEE Trans. Med. Imaging 28(4), 595–607 (2009)CrossRef
    10.Wold, S., Geladi, P., Esbensen, K., Öhman, J.: Multi-way principal components-and PLS-analysis. J. Chemometr. 1(1), 41–56 (1987)CrossRef
    11.Rao, A., Aljabar, P., Rueckert, D.: Hierarchical statistical shape analysis and prediction of sub-cortical brain structures. Med. Image Anal. 12(1), 55–68 (2008)CrossRef
    12.Lekadir, K., Hoogendoorn, C., Hazrati-Marangalou, J., Taylor, Z., Noble, C., Van Rietbergen, B., Frangi, A.: A predictive model of vertebral trabecular anisotropy from ex vivo micro-CT. IEEE Trans. Med. Imaging 34, 1747–1759 (2015)CrossRef
    13.Lekadir, K., Pashaei, A., Hoogendoorn, C., Pereanez, M., Alba, X., Frangi, A.F.: Effect of statistically derived fiber models on the estimation of cardiac electrical activation. IEEE Trans. Biomed. Eng. 61(11), 2740–2748 (2014)CrossRef
    14.Lekadir, K., Hazrati-Marangalou, J., Hoogendoorn, C., Taylor, Z., van Rietbergen, B., Frangi, A.F.: Statistical estimation of femur micro-architecture using optimal shape and density predictors. J. Biomech. 48(4), 598–603 (2015)CrossRef
    15.Lekadir, K., Hoogendoorn, C., Pereanez, M., Alba, X., Pashaei, A., Frangi, A.F.: Statistical personalization of ventricular fiber orientation using shape predictors. IEEE Trans. Med. Imaging 33(4), 882–890 (2014)CrossRef
    16.McIntosh, A.R., Lobaugh, N.J.: Partial least squares analysis of neuroimaging data: applications and advances. NeuroImage 23, S250–S263 (2004)CrossRef
    17.Abdi, H.: Partial least squares regression (PLS-regression), Thousand Oaks, CA, Sage, pp. 792–795 (2003)
    18.Pérez-Enciso, M., Tenenhaus, M.: Prediction of clinical outcome with microarray data: a partial least squares discriminant analysis (PLS-DA) approach. Hum. Genet. 112(5–6), 581–592 (2003)
    19.Chevallier, S., Bertrand, D., Kohler, A., Courcoux, P.: Application of PLS-DA in multivariate image analysis. J. Chemometr. 20(5), 221 (2006)CrossRef
    20.Fonseca, C.G., Backhaus, M., Bluemke, D.A., Britten, R.D., Chung, J.D., Cowan, B.R., Dinov, I.D., Finn, J.P., et al.: The cardiac atlas project–an imaging database for computational modeling and statistical atlases of the heart. Bioinformatics 27(16), 2288–2295 (2011)CrossRef
  • 作者单位:Karim Lekadir (19)
    Xènia Albà (19)
    Marco Pereañez (19)
    Alejandro F. Frangi (20)

    19. Center for Computational Imaging and Simulation Technologies in Biomedicine, Universitat Pompeu Fabra, Barcelona, Spain
    20. Center for Computational Imaging and Simulation Technologies in Biomedicine, University of Sheffield, Sheffield, UK
  • 丛书名:Statistical Atlases and Computational Models of the Heart. Imaging and Modelling Challenges
  • ISBN:978-3-319-28712-6
  • 刊物类别:Computer Science
  • 刊物主题:Artificial Intelligence and Robotics
    Computer Communication Networks
    Software Engineering
    Data Encryption
    Database Management
    Computation by Abstract Devices
    Algorithm Analysis and Problem Complexity
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1611-3349
文摘
Statistical shape modeling (SSM) is a widely popular framework in cardiac image analysis, especially for image segmentation and computer-aided diagnosis. However, the conventional PCA-based models produce new axes of variation which are statistically motivated but thus are not necessarily clinically meaningful. In this paper, we propose an alternative method for statistical decomposition of the shape variability based on partial least squares (PLS). With this method, the model construction is achieved such that it is constrained by the specific clinical question of interest (e.g., estimation of disease state). To achieve this, instead of deriving modes of variation in the directions of maximal variation as in PCA, PLS searches for new axes of variation that correlate most with some output clinical response variables such as diagnostic labels, leading to a decomposition that is anatomically and clinically more meaningful. The validation carried out with 200 cases from the Cardiac Atlas Project database as part of the MICCAI 2015 challenge on SSM, including healthy and infarcted left ventricles, shows the strength of the proposed PLS-based statistical shape model, with 98 % prediction accuracy.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700