A genomic survey of proteases in Aspergilli
详细信息    查看全文
  • 作者:Sebnem Ozturkoglu Budak (4) (5) (6)
    Miaomiao Zhou (4) (6)
    Carlo Brouwer (4)
    Ad Wiebenga (4) (6)
    Isabelle Benoit (4) (6)
    Marcos Di Falco (7)
    Adrian Tsang (7)
    Ronald P de Vries (4) (6)

    4. CBS-KNAW Fungal Biodiversity Center
    ; Uppsalalaan 8 ; Utrecht ; 3584 CT ; The Netherlands
    5. Faculty of Agriculture
    ; Department of Dairy Technology ; University of Ankara ; Ankara ; Turkey
    6. Fungal Molecular Physiology
    ; Utrecht University ; Utrecht ; The Netherlands
    7. Centre for Structural and Functional Genomics
    ; Concordia University ; 7141 Sherbrooke Street West ; Montreal ; QC ; H4B 1R6 ; Canada
  • 刊名:BMC Genomics
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:15
  • 期:1
  • 全文大小:1,424 KB
  • 参考文献:1. Vishwanatha, KS, Rao, AGA, Singh, SA (2009) Characterisation of acid protease expressed from Aspergillus oryzae MTCC 5341. Food Chem 114: pp. 402-407 CrossRef
    2. Fedatto, LM, Silva-Stenico, ME, Etchegaray, A, Pacheco, FTH, Rodrigues, JLM, Tsai, SM (2006) Detection and characterization of protease secreted by the plant pathogen Xylella fastidiosa. Microbiol Res 161: pp. 263-272 CrossRef
    3. Tunga, R, Shrivastava, B, Banerjee, R (2003) Purification and characterization of a protease from solid state cultures of Aspergillus parasiticus. Process Biochem 38: pp. 1553-1558 CrossRef
    4. Horikoshi, K (1996) Alkaliphiles - From an industrial point of view. Fems Microbiol Rev 18: pp. 259-270
    5. Kembhavi, AA, Kulkarni, A, Pant, A (1993) Salt-tolerant and thermostable alkaline protease from Bacillus subtilis NCIM no 64. Appl Biochem Biotechnol 38: pp. 83-92 CrossRef
    6. Gessesse, A, Gashe, BA (1997) Production of alkaline protease by an alkaliphilic bacteria isolated from an alkaline soda lake. Biotechnol Lett 19: pp. 479-481 CrossRef
    7. Hernandez-Martinez, R, Gutierrez-Sanchez, G, Bergmann, CW, Loera-Corral, O, Rojo-Dominguez, A, Huerta-Ochoa, S, Regalado-Gonzalez, C, Prado-Barragan, LA (2011) Purification and characterization of a thermodynamic stable serine protease from Aspergillus fumigatus. Process Biochem 46: pp. 2001-2006 CrossRef
    8. Kim, T, Lei, X (2005) Expression and characterization of a thermostable serine protease (TfpA) from Thermomonospora fusca YX in Pichia pastoris. Appl Microbiol Biotechnol 68: pp. 355-359 CrossRef
    9. Kaur, S, Vohra, RM, Kapoor, M, Beg, QK, Hoondal, GS (2001) Enhanced production and characterization of a highly thermostable alkaline protease from Bacillus sp P-2. World J Microbiol Biotechnol 17: pp. 125-129 CrossRef
    10. Xue, Q-G, Waldrop, GL, Schey, KL, Itoh, N, Ogawa, M, Cooper, RK, Losso, JN, La Peyre, JF (2006) A novel slow-tight binding serine protease inhibitor from eastern oyster (Crassostrea virginica) plasma inhibits perkinsin, the major extracellular protease of the oyster protozoan parasite Perkinsus marinus. Comp Biochem Physiol B-Biochem Mol Biol 145: pp. 16-26 CrossRef
    11. Li, Y, Zhao, P, Liu, S, Dong, Z, Chen, J, Xiang, Z, Xia, Q (2012) A novel protease inhibitor in Bombyx mori is involved Beauveria bassiana. Insect Biochem Mol Biol 42: pp. 766-775 CrossRef
    12. Macedo, ML, Diz Filho, EB, Freire, MG, Oliva, ML, Sumikawa, JT, Toyama, MH, Marangoni, S (2011) A trypsin inhibitor from Sapindus saponaria L. seeds: purification, characterization, and activity towards pest insect digestive enzyme. Protein J 30: pp. 9-19 CrossRef
    13. Sabotic, J, Kos, J (2012) Microbial and fungal protease inhibitors-current and potential applications. Appl Microbiol Biotechnol 93: pp. 1351-1375 CrossRef
    14. Charles, P, Devanathan, V, Anbu, P, Ponnuswamy, MN, Kalaichelvan, PT, Hur, B-K (2008) Purification characterization and crystallization of an extracellular alkaline protease from Aspergillus nidulans HA-10. J Basic Microbiol 48: pp. 347-352 CrossRef
    15. Fedorova, ND, Khaldi, N, Joardar, VS, Maiti, R, Amedeo, P, Anderson, MJ, Crabtree, J, Silva, JC, Badger, JH, Albarraq, A, Angiuoli, S, Bussey, H, Bowyer, P, Cotty, PJ, Dyer, PS, Egan, A, Galens, K, Fraser-Liggett, CM, Haas, BJ, Inman, JM, Kent, R, Lemieux, S, Malavazi, I, Orvis, J, Roemer, T, Ronning, CM, Sundaram, JP, Sutton, G, Turner, G, Venter, JC (2008) Genomic islands in the pathogenic filamentous fungus Aspergillus fumigatus. Plos Genetics 4: pp. e1000046 CrossRef
    16. Braaksma, M, Martens-Uzunova, ES, Punt, PJ, Schaap, PJ (2010) An inventory of the Aspergillus niger secretome by combining in silico predictions with shotgun proteomics data. BMC Genomics 11: pp. 584 CrossRef
    17. Wang, Y, Xue, W, Sims, AH, Zhao, C, Wang, A, Tang, G, Qin, J, Wang, H (2008) Isolation of four pepsin-like protease genes from Aspergillus niger and analysis of the effect of disruptions on heterologous laccase expression. Fungal Genet Biol 45: pp. 17-27 CrossRef
    18. Conesa, A, Punt, PJ, van Luijk, N, van den Hondel, C (2001) The secretion pathway in filamentous fungi: a biotechnological view. Fungal Genet Biol 33: pp. 155-171 CrossRef
    19. Kunert, J, Kopecek, P (2000) Multiple forms of the serine protease Alp of Aspergillus fumigatus. Mycoses 43: pp. 339-347 CrossRef
    20. Markaryan, A, Morozova, I, Yu, HS, Kolattukudy, PE (1994) Purification and characterization of an elastinolytic metalloprotease from Aspergillus fumigatus and immunoelectron microscopic evidence of secretion of this enzyme by the fungus invading the murine lung. Infect Immun 62: pp. 2149-2157
    21. Machida, M, Yamada, O, Gomi, K (2008) Genomics of Aspergillus oryzae: learning from the history of Koji mold and exploration of its future. DNA Res 15: pp. 173-183 CrossRef
    22. Su, NW, Lee, MH (2001) Screening and characterization of koji molds producing saline-tolerant protease. J Ind Microbiol Biotechnol 26: pp. 230-234 CrossRef
    23. Andersen, MR, Salazar, MP, Schaap, PJ, van de Vondervoort, PJ, Culley, D, Thykaer, J, Frisvad, JC, Nielsen, KF, Albang, R, Albermann, K, Berka, RM, Braus, GH, Braus-Stromeyer, SA, Corrochano, LM, Dai, Z, van Dijck, PW, Hofmann, G, Lasure, LL, Magnuson, JK, Menke, H, Meijer, M, Meijer, SL, Nielsen, JB, Nielsen, ML, van Ooyen, AJ, Pel, HJ, Poulsen, L, Samson, RA, Stam, H, Tsang, A (2011) Comparative genomics of citric-acid-producing Aspergillus niger ATCC 1015 versus enzyme-producing CBS 513.88. Genome Res 21: pp. 885-897 CrossRef
    24. Galagan, JE, Calvo, SE, Cuomo, C, Ma, LJ, Wortman, JR, Batzoglou, S, Lee, SI, Basturkmen, M, Spevak, CC, Clutterbuck, J, Kapitonov, V, Jurka, J, Scazzocchio, C, Farman, M, Butler, J, Purcell, S, Harris, S, Braus, GH, Draht, O, Busch, S, D'Enfert, C, Bouchier, C, Goldman, GH, Bell-Pedersen, D, Griffiths-Jones, S, Doonan, JH, Yu, J, Vienken, K, Pain, A, Freitag, M (2005) Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A. oryzae. Nature 438: pp. 1105-1115 CrossRef
    25. Machida, M, Asai, K, Sano, M, Tanaka, T, Kumagai, T, Terai, G, Kusumoto, K, Arima, T, Akita, O, Kashiwagi, Y, Abe, K, Gomi, K, Horiuchi, H, Kitamoto, K, Kobayashi, T, Takeuchi, M, Denning, DW, Galagan, JE, Nierman, WC, Yu, J, Archer, DB, Bennett, JW, Bhatnagar, D, Cleveland, TE, Fedorova, ND, Gotoh, O, Horikawa, H, Hosoyama, A, Ichinomiya, M, Igarashi, R (2005) Genome sequencing and analysis of Aspergillus oryzae. Nature 438: pp. 1157-1161 CrossRef
    26. Yu, J, Payne, GA, Nierman, WC, Machida, M, Bennett, JW, Campbell, BC, Robens, JF, Bhatnagar, D, Dean, RA, Cleveland, TE (2008) Aspergillus flavus genomics as a tool for studying the mechanism of aflatoxin formation. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 25: pp. 1152-1157 CrossRef
    27. Nierman, WC, Pain, A, Anderson, MJ, Wortman, JR, Kim, HS, Arroyo, J, Berriman, M, Abe, K, Archer, DB, Bermejo, C, Bennett, J, Bowyer, P, Chen, D, Collins, M, Coulsen, R, Davies, R, Dyer, PS, Farman, M, Fedorova, N, Fedorova, N, Feldblyum, TV, Fischer, R, Fosker, N, Fraser, A, Garc铆a, JL, Garc铆a, MJ, Goble, A, Goldman, GH, Gomi, K, Griffith-Jones, S (2005) Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus. Nature 438: pp. 1151-1156 CrossRef
    28. Arnaud, MB, Cerqueira, GC, Inglis, DO, Skrzypek, MS, Binkley, J, Chibucos, MC, Crabtree, J, Howarth, C, Orvis, J, Shah, P, Wymore, F, Binkley, G, Miyasato, SR, Simison, M, Sherlock, G, Wortman, JR (2012) The Aspergillus Genome Database (AspGD): recent developments in comprehensive multispecies curation, comparative genomics and community resources. Nucleic Acids Res 40: pp. D653-D659 CrossRef
    29. Gajera, HP, Vakharia, DN (2010) Molecular and biochemical characterization of Trichoderma isolates inhibiting a phytopathogenic fungi Aspergillus niger Van Tieghem. Physiol Mol Plant Pathol 74: pp. 274-282 CrossRef
    30. Fischer, S, Brunk, BP, Chen, F, Gao, X, Harb, OS, Iodice, JB, Shanmugam, D, Roos, DS, Stoeckert, CJ (2011) Using OrthoMCL to assign proteins to OrthoMCL-DB groups or to cluster proteomes into new ortholog groups. Curr Protoc Bioinformatics 12: pp. 11-19
    31. Tautz, D, Domazet-Loso, T (2011) The evolutionary origin of orphan genes. Nat Rev Genet 12: pp. 692-702 CrossRef
    32. Khalturin, K, Hemmrich, G, Fraune, S, Augustin, R, Bosch, TC (2009) More than just orphans: are taxonomically-restricted genes important in evolution?. Trends Genetics: TIG 25: pp. 404-413 CrossRef
    33. Schinko, T, Berger, H, Lee, W, Gallmetzer, A, Pirker, K, Pachlinger, R, Buchner, I, Reichenauer, T, Guldener, U, Strauss, J (2010) Transcriptome analysis of nitrate assimilation in Aspergillus nidulans reveals connections to nitric oxide metabolism. Mol Microbiol 78: pp. 720-738 CrossRef
    34. Guillemette, T, van Peij, N, Goosen, T, Lanthaler, K, Robson, GD, van den Hondel, CA, Stam, H, Archer, DB (2007) Genomic analysis of the secretion stress response in the enzyme-producing cell factory Aspergillus niger. BMC Genomics 8: pp. 158 CrossRef
    35. Hartmann, T, Cairns, TC, Olbermann, P, Morschh盲user, J, Bignell, EM, Krappmann, S (2011) Oligopeptide transport and regulation of extracellular proteolysis are required for growth of Aspergillus fumigatus on complex substrates but not for virulence. Mol Microbiol 82: pp. 917-935 CrossRef
    36. Szilagyi, M, Miskei, M, Karanyi, Z, Lenkey, B, Pocsi, I, Emri, T (2013) Transcriptome changes initiated by carbon starvation in Aspergillus nidulans. Microbiology 159: pp. 176-190 CrossRef
    37. Saykhedkar, S, Ray, A, Ayoubi-Canaan, P, Hartson, SD, Prade, R, Mort, AJ (2012) A time course analysis of the extracellular proteome of Aspergillus nidulans growing on sorghum stover. Biotechnol Biofuels 5: pp. 52 CrossRef
    38. Malavazi, I, Savoldi, M, Di Mauro, SM, Menck, CF, Harris, SD, Goldman, MH, Goldman, GH (2006) Transcriptome analysis of Aspergillus nidulans exposed to camptothecin-induced DNA damage. Eukaryot Cell 5: pp. 1688-1704 CrossRef
    39. Tsang, A, Butler, G, Powlowski, J, Panisko, EA, Baker, SE (2009) Analytical and computational approaches to define the Aspergillus niger secretome. Fungal Genet Biol 46: pp. S153-S160 CrossRef
    40. de Groot, PW, Brandt, BW, Horiuchi, H, Ram, AF, de Koster, CG, Klis, FM (2009) Comprehensive genomic analysis of cell wall genes in Aspergillus nidulans. Fungal Genet Biol 46: pp. S72-S81 CrossRef
    41. Hortschansky, P, Eisendle, M, Al-Abdallah, Q, Schmidt, AD, Bergmann, S, Thon, M, Kniemeyer, O, Abt, B, Seeber, B, Werner, ER, Kato, M, Brakhage, AA, Haas, H (2007) Interaction of HapX with the CCAAT-binding complex鈥揳 novel mechanism of gene regulation by iron. EMBO J 26: pp. 3157-3168 CrossRef
    42. vanKuyk, PA, Cheetham, BF, Katz, ME (2000) Analysis of two Aspergillus nidulans genes encoding extracellular proteases. Fung Genet Biol 29: pp. 201-210 CrossRef
    43. Emri, T, Szilagyi, M, Laszlo, K, MH, M, Pocsi, I (2009) PepJ is a new extracellular proteinase of Aspergillus nidulans. Folia Microbiol (Praha) 54: pp. 105-109 CrossRef
    44. Katz, ME, Bernardo, SM, Cheetham, BF (2008) The interaction of induction, repression and starvation in the regulation of extracellular proteases in Aspergillus nidulans: evidence for a role for CreA in the response to carbon starvation. Curr Genet 54: pp. 47-55 CrossRef
    45. Liang, Y, Pan, L, Lin, Y (2009) Analysis of extracellular proteins of Aspergillus oryzae grown on soy sauce koji. Biosci Biotechnol Biochem 73: pp. 192-195 CrossRef
    46. te Biesebeke, R, van Biezen, N, de Vos, WM, van den Hondel, CA, Punt, PJ (2005) Different control mechanisms regulate glucoamylase and protease gene transcription in Aspergillus oryzae in solid-state and submerged fermentation. Appl Microbiol Biotechnol 67: pp. 75-82 CrossRef
    47. Levin, AM, de Vries, RP, Conesa, A, de Bekker, C, Talon, M, Menke, HH, van Peij, NN, Wosten, HA (2007) Spatial differentiation in the vegetative mycelium of Aspergillus niger. Eukaryot Cell 6: pp. 2311-2322 CrossRef
    48. Oda, K, Kakizono, D, Yamada, O, Iefuji, H, Akita, O, Iwashita, K (2006) Proteomic analysis of extracellular proteins from Aspergillus oryzae grown under submerged and solid-state culture conditions. Appl Environ Microbiol 72: pp. 3448-3457 CrossRef
    49. Morya, VK, Yadav, S, Kim, EK, Yadav, D (2012) In silico characterization of alkaline proteases from different species of Aspergillus. Appl Biochem Biotechnol 166: pp. 243-257 CrossRef
    50. de Oliveira, JM, van Passel, MW, Schaap, PJ, de Graaff, LH (2011) Proteomic analysis of the secretory response of Aspergillus niger to D-maltose and D-xylose. PLoS One 6: pp. e20865 CrossRef
    51. Sharon, H, Hagag, S, Osherov, N (2009) Transcription factor PrtT controls expression of multiple secreted proteases in the human pathogenic mold Aspergillus fumigatus. Infect Immun 77: pp. 4051-4060 CrossRef
    52. Zhu, L, Nemoto, T, Yoon, J, Maruyama, J, Kitamoto, K (2012) Improved heterologous protein production by a tripeptidyl peptidase gene (AosedD) disruptant of the filamentous fungus Aspergillus oryzae. J Gen Appl Microbiol 58: pp. 199-209 CrossRef
    53. Blinkovsky, AM, Byun, T, Brown, KM, Golightly, EJ (1999) Purification, characterization, and heterologous expression in Fusarium venenatum of a novel serine carboxypeptidase from Aspergillus oryzae. Appl Environ Microbiol 65: pp. 3298-3303
    54. Jin, FJ, Watanabe, T, Juvvadi, PR, Maruyama, J, Arioka, M, Kitamoto, K (2007) Double disruption of the proteinase genes, tppA and pepE, increases the production level of human lysozyme by Aspergillus oryzae. Appl Microbiol Biotechnol 76: pp. 1059-1068 CrossRef
    55. Oakley, BR, Morris, NR (1981) A beta-tubulin mutation in Aspergillus nidulans that blocks microtubule function without blocking assembly. Cell 24: pp. 837-845 CrossRef
    56. Zhao, X, Hume, SL, Johnson, C, Thompson, P, Huang, J, Gray, J, Lamb, HK, Hawkins, AR (2010) The transcription repressor NmrA is subject to proteolysis by three Aspergillus nidulans proteases. Protein Sci 19: pp. 1405-1419 CrossRef
    57. Katz, ME, Rice, RN, Cheetham, BF (1994) Isolation and characterization of an Aspergillus nidulans gene encoding an alkaline protease. Gene 150: pp. 287-292 CrossRef
    58. Araujo-Bazan, L, Fernandez-Martinez, J, Rios, VM, Etxebeste, O, Albar, JP, Penalva, MA, Espeso, EA (2008) NapA and NapB are the Aspergillus nidulans Nap/SET family members and NapB is a nuclear protein specifically interacting with importin alpha. Fungal Genet Biol 45: pp. 278-291 CrossRef
    59. Freitas, JS, Silva, EM, Leal, J, Gras, DE, Martinez-Rossi, NM, Dos Santos, LD, Palma, MS, Rossi, A (2011) Transcription of the Hsp30, Hsp70, and Hsp90 heat shock protein genes is modulated by the PalA protein in response to acid pH-sensing in the fungus Aspergillus nidulans. Cell Stress Chaperones 16: pp. 565-572 CrossRef
    60. Noventa-Jordao, MA, do Nascimento, AM, Goldman, MH, Terenzi, HF, Goldman, GH (2000) Molecular characterization of ubiquitin genes from Aspergillus nidulans: mRNA expression on different stress and growth conditions. Biochim Biophys Acta 1490: pp. 237-244 CrossRef
    61. Wartenberg, D, Vodisch, M, Kniemeyer, O, Albrecht-Eckardt, D, Scherlach, K, Winkler, R, Weide, M, Brakhage, AA (2012) Proteome analysis of the farnesol-induced stress response in Aspergillus nidulans鈥揟he role of a putative dehydrin. J Proteomics 75: pp. 4038-4049 CrossRef
    62. Lu, X, Sun, J, Nimtz, M, Wissing, J, Zeng, AP, Rinas, U (2010) The intra- and extracellular proteome of Aspergillus niger growing on defined medium with xylose or maltose as carbon substrate. Microb Cell Fact 9: pp. 23 CrossRef
    63. Sriranganadane, D, Waridel, P, Salamin, K, Reichard, U, Grouzmann, E, Neuhaus, JM, Quadroni, M, Monod, M (2010) Aspergillus protein degradation pathways with different secreted protease sets at neutral and acidic pH. J Proteome Res 9: pp. 3511-3519 CrossRef
    64. Muskardin, DT, Voelkel, NF, Fitzpatrick, FA (1994) Modulation of pulmonary leukotriene formation and perfusion pressure by bestatin, an inhibitor of leukotriene A4 hydrolase. Biochem Pharmacol 48: pp. 131-137 CrossRef
    65. Schaller, A, Bergey, DR, Ryan, CA (1995) Induction of wound response genes in tomato leaves by bestatin, an inhibitor of aminopeptidases. Plant Cell 7: pp. 1893-1898 CrossRef
    66. Umezawa, H, Aoyagi, T, Morishima, H, Matsuzaki, M, Hamada, M (1970) Pepstatin, a new pepsin inhibitor produced by Actinomycetes. J Antibiot (Tokyo) 23: pp. 259-262 CrossRef
    67. Marciniszyn, J, Hartsuck, JA, Tang, J (1977) Pepstatin inhibition mechanism. Adv Exp Med Biol 95: pp. 199-210 CrossRef
    68. Marciniszyn, J, Hartsuck, JA, Tang, J (1976) Mode of inhibition of acid proteases by pepstatin. J Biol Chem 251: pp. 7088-7094
    69. Auld, DS (1995) Removal and replacement of metal ions in metallopeptidases. Methods Enzymol 248: pp. 228-242 CrossRef
    70. Thompson, JM, Agee, K, Sidow, SJ, McNally, K, Lindsey, K, Borke, J, Elsalanty, M, Tay, FR, Pashley, DH (2012) Inhibition of endogenous dentin matrix metalloproteinases by ethylenediaminetetraacetic acid. J Endod 38: pp. 62-65 CrossRef
    71. James, GT (1978) Inactivation of the protease inhibitor phenylmethylsulfonyl fluoride in buffers. Anal Biochem 86: pp. 574-579 CrossRef
    72. Punt, PJ, Schuren, FH, Lehmbeck, J, Christensen, T, Hjort, C, van den Hondel, CA (2008) Characterization of the Aspergillus niger prtT, a unique regulator of extracellular protease encoding genes. Fungal Genet Biol 45: pp. 1591-1599 CrossRef
    73. Hagag, S, Kubitschek-Barreira, P, Neves, GW, Amar, D, Nierman, W, Shalit, I, Shamir, R, Lopes-Bezerra, L, Osherov, N (2012) Transcriptional and proteomic analysis of the Aspergillus fumigatus DeltaprtT protease-deficient mutant. PLoS One 7: pp. e33604 CrossRef
    74. Chen, L, Zou, G, Zhang, L, de Vries, RP, Yan, X, Zhang, J, Liu, R, Wang, C, Qu, Y, Zhou, Z (2014) The distinctive regulatory roles of PrtT in the cell metabolism of Penicillium oxalicum. Fungal Genet Biol 63: pp. 42-54 CrossRef
    75. Mattern, IE, van Noort, JM, van den Berg, P, Archer, DB, Roberts, IN, van den Hondel, CA (1992) Isolation and characterization of mutants of Aspergillus niger deficient in extracellular proteases. Mol Gen Genet 234: pp. 332-336 CrossRef
    76. Stadtman, ER (1990) Metal ion-catalyzed oxidation of proteins: biochemical mechanism and biological consequences. Free Radic Biol Med 9: pp. 315-325 CrossRef
    77. Dodia, MS, Rawal, CM, Bhimani, HG, Joshi, RH, Khare, SK, Singh, SP (2008) Purification and stability characteristics of an alkaline serine protease from a newly isolated Haloalkaliphilic bacterium sp. AH-6. J Ind Microbiol Biotechnol 35: pp. 121-131 CrossRef
    78. Eklund, M, Rademacher, M, Sauer, WC, Blank, R, Mosenthin, R (2014) Standardized ileal digestibility of amino acids in alfalfa meal, sugar beet pulp, and wheat bran compared to wheat and protein ingredients for growing pigs. J Anim Sci 92: pp. 1037-1043 CrossRef
    79. Jarai, G, Buxton, F (1994) Nitrogen, carbon, and pH regulation of extracellular acidic proteases of Aspergillus niger. Curr Genet 26: pp. 238-244 CrossRef
    80. Nitsche, BM, Jorgensen, TR, Akeroyd, M, Meyer, V, Ram, AF (2012) The carbon starvation response of Aspergillus niger during submerged cultivation: insights from the transcriptome and secretome. BMC Genomics 13: pp. 380 CrossRef
    81. Emri, T, Molnar, Z, Veres, T, Pusztahelyi, T, Dudas, G, Pocsi, I (2006) Glucose-mediated repression of autolysis and conidiogenesis in Emericella nidulans. Mycol Res 110: pp. 1172-1178 CrossRef
    82. St Leger, RJ, Nelson, JO, Screen, SE (1999) The entomopathogenic fungus Metarhizium anisopliae alters ambient pH, allowing extracellular protease production and activity. Microbiology 145: pp. 2691-2699
    83. Poulsen, L, Andersen, MR, Lantz, AE, Thykaer, J (2012) Identification of a transcription factor controlling pH-dependent organic acid response in Aspergillus niger. PLoS One 7: pp. e50596 CrossRef
    84. Mount, DW (2007) CSH Protoc. Using the Basic Local Alignment Search Tool (BLAST).
    85. Li, L, Stoeckert, CJ, Roos, DS (2003) OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res 13: pp. 2178-2189 CrossRef
    86. Kall, L, Krogh, A, Sonnhammer, EL (2007) Advantages of combined transmembrane topology and signal peptide prediction--the Phobius web server. Nucleic Acids Res 35: pp. W429-W432 CrossRef
    87. Petersen, TN, Brunak, S, von Heijne, G, Nielsen, H (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8: pp. 785-786 CrossRef
    88. Hiller, K, Grote, A, Scheer, M, Munch, R, Jahn, D (2004) PrediSi: prediction of signal peptides and their cleavage positions. Nucleic Acids Res 32: pp. W375-W379 CrossRef
    89. Yu, CS, Lin, CJ, Hwang, JK (2004) Predicting subcellular localization of proteins for Gram-negative bacteria by support vector machines based on n-peptide compositions. Protein Sci 13: pp. 1402-1406 CrossRef
    90. Hoglund, A, Donnes, P, Blum, T, Adolph, HW, Kohlbacher, O (2006) MultiLoc: prediction of protein subcellular localization using N-terminal targeting sequences, sequence motifs and amino acid composition. Bioinformatics 22: pp. 1158-1165 formatics/btl002" target="_blank" title="It opens in new window">CrossRef
    91. Horton, P, Park, KJ, Obayashi, T, Fujita, N, Harada, H, Adams-Collier, CJ, Nakai, K (2007) WoLF PSORT: protein localization predictor. Nucleic Acids Res 35: pp. W585-W587 CrossRef
    92. Lum, G, Min, XJ (2011) Database (Oxford). FunSecKB: the Fungal Secretome Knowledge Base.
    93. Johnson, LS, Eddy, SR, Portugaly, E (2010) Hidden Markov model speed heuristic and iterative HMM search procedure. Bmc Bioinformatics 11: pp. 431 CrossRef
    94. Bateman, A, Birney, E, Durbin, R, Eddy, SR, Howe, KL, Sonnhammer, ELL (2000) The Pfam protein families database. Nucleic Acid Res 28: pp. 263-266 CrossRef
    95. de Vries, RP, Burgers, K, van de Vondervoort, PJI, Frisvad, JC, Samson, RA, Visser, J (2004) A new black Aspergillus species, A. vadensis, is a promising host for homologous and heterologous protein production. Appl Environ Microbiol 70: pp. 3954-3959 CrossRef
    96. Englyst, HN, Cummings, JH (1984) Simplified method for the measurement of total non-starch polysaccharides by gas-liquid chromatography of constituent sugars as alditol acetates. Analyst 109: pp. 937-942 CrossRef
    97. Vizcaino, JA, Cote, RG, Csordas, A, Dianes, JA, Fabregat, A, Foster, JM, Griss, J, Alpi, E, Birim, M, Contell, J, O'Kelly, G, Schoenegger, A, Ovelleiro, D, P茅rez-Riverol, Y, Reisinger, F, R铆os, D, Wang, R, Hermjakob, H (2013) The PRoteomics IDEntifications (PRIDE) database and associated tools: status in 2013. Nucleic Acids Res 41: pp. D1063-D1069 CrossRef
  • 刊物主题:Life Sciences, general; Microarrays; Proteomics; Animal Genetics and Genomics; Microbial Genetics and Genomics; Plant Genetics & Genomics;
  • 出版者:BioMed Central
  • ISSN:1471-2164
文摘
Background Proteases can hydrolyze peptides in aqueous environments. This property has made proteases the most important industrial enzymes by taking up about 60% of the total enzyme market. Microorganisms are the main sources for industrial protease production due to their high yield and a wide range of biochemical properties. Several Aspergilli have the ability to produce a variety of proteases, but no comprehensive comparative study has been carried out on protease productivity in this genus so far. Results We have performed a combined analysis of comparative genomics, proteomics and enzymology tests on seven Aspergillus species grown on wheat bran and sugar beet pulp. Putative proteases were identified by homology search and Pfam domains. These genes were then clusters based on orthology and extracellular proteases were identified by protein subcellular localization prediction. Proteomics was used to identify the secreted enzymes in the cultures, while protease essays with and without inhibitors were performed to determine the overall protease activity per protease class. All this data was then integrated to compare the protease productivities in Aspergilli. Conclusions Genomes of Aspergillus species contain a similar proportion of protease encoding genes. According to comparative genomics, proteomics and enzymatic experiments serine proteases make up the largest group in the protease spectrum across the species. In general wheat bran gives higher induction of proteases than sugar beet pulp. Interesting differences of protease activity, extracellular enzyme spectrum composition, protein occurrence and abundance were identified for species. By combining in silico and wet-lab experiments, we present the intriguing variety of protease productivity in Aspergilli.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700