Digging through the past: the evolutionary history of burrowing and underground feeding in rhinophrynid anurans
详细信息    查看全文
  • 作者:Amy C. Henrici
  • 关键词:Anura ; Rhinophrynidae ; Fossorial ; North America
  • 刊名:Palaeobiodiversity and Palaeoenvironments
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:96
  • 期:1
  • 页码:97-109
  • 全文大小:1,934 KB
  • 参考文献:AmphibiaWeb. http://​amphibiaweb.​org/​ . Accessed 17 December 2014.
    Báez, A. M. (1991). A new early Paleocene neobatrachian frog from the Santa Lucia Formation in south central Bolivia, and comments on the Cretaceous and early Tertiary batrachofaunas of South America, In R. Suarez-Soruco (Ed.), Fosiles y Facies de Bolivia. Volume I. Vertebrados, revista téchnica de yacimientos petroliferos fiscales Bolivianos, 12(3–4), 529–540.
    Báez, A. M. (1995). Estesiella, replacement name for Estesius, a Paleocene neobatrachian frog from Bolivia. Ameghiniana, 32(1), 56.
    Báez, A. M. (2012). Anurans from the Early Cretaceous Lagerstätte of Las Hoyas, Spain: new evidence on the Mesozoic diversification of crown-clade Anura. Cretaceous Research, 41, 90–106.CrossRef
    Bay, K. W. (1969). Stratigraphy of Eocene sedimentary rocks in the Lysite Mountain area, Hot Springs, Freemont, and Washakie Counties, Wyoming. Unpublished PhD dissertation, Laramie: University of Wyoming.
    Böhme, W., Roček, Z., & Špinar, Z. V. (1982). On Pelobates decheni Troschel, 1861, and Zaphrissa eurypelis Cope, 1866 (Amphibia: Salientia: Pelobatidae) from the early Miocene of Rott near Bonn, West Germany. Journal of Vertebrate Paleontology, 2(1), 1–7.CrossRef
    Duellman, W. E. (1971). The burrowing toad, Rhinophrynus dorsalis, on the Caribbean lowland of Central America. Herpetologica, 27, 55–56.
    Duellman, W. E., & Trueb, L. (1986). Biology of Amphibians. New York: McGraw-Hill.
    Duellman, W. E., & Sweet, S. S. (1999). Distribution patterns of amphibians in the Nearctic region of North America. In W. E. Duellman (Ed.), Patterns of distribution of amphibians (pp. 31–110). Baltimore: Johns Hopkins University Press.
    Estes, R. (1975). Lower vertebrates from the Bighorn Basin, Wyoming. Herpetologica, 31(4), 365–385.
    Evanoff, E., Prothero, D. R., & Lander, R. H. (1992). Eocene-Oligocene climatic change in North America: the White River Formation near Douglas, east-central Wyoming. In D. R. Prothero & W. A. Berggren (Eds.), Eocene-Oligocene climatic and biotic evolution (pp. 116–130). Princeton: Princeton University Press.
    Foster, M. S., & McDiarmid, R. W. (1983). Rhinophrynus dorsalis. In D. H. Janzen (Ed.), Costa Rican natural history (pp. 419–421). Chicago: University of Chicago Press.
    Fouquette, M. J. Jr. (1969). Rhinophrynus, R. dorsalis. Catalogue of American amphibians and reptiles, 78.1-78.2.
    Fox, D. L. (2000). Growth increments in Gomphotherium tusks and implications for late Miocene climate change in North America. Palaeogeography, Palaeoclimatology, Palaeoecology, 156(3–4), 327–348.CrossRef
    Gao, K. (1986). A new spadefoot toad from the Miocene of Linqu, Shandong with a restudy of Bufo linquensis Young 1977. Vertebrata Palasiatica, 24(1), 63–74.
    Gingerich, P. D. (2003). Mammalian responses to climate change at the Paleocene-Eocene boundary: Polecat Bench record in the northern Bighorn Basin, Wyoming. Geological Society of America Special Paper, 369, 463–478.
    Gosner, K. L. (1960). A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica, 16, 183–190.
    Grandstein, F., Ogg, J., & Smith, A. (2004). A geologic time scale 2004. Cambridge: Cambridge University Press.CrossRef
    Gunnell, G. F. Murphy, P. C., Stucky, R. K., Townsend, K. E., Robinson, R., Zonneveld, J-P, & Bartels, W. S. (2009). Biostratigraphy and biochronology of the latest Wasatchian, Bridgerian, and Uintan North American Land Mammal “ages”. In L. B. Albright III (Ed.) Papers on geology, vertebrate paleontology, and biostratigraphy in honor of Michael O. Woodburne, Museum of Northern Arizona Bulletin, 65, 279–330.
    Hecht, M. K. (1959). Reptiles and amphibians. In P. O. McGrew (Ed.) The geology and paleontology of the Elk Mountain and Tabernacle Butte area, Wyoming (pp. 130–144), American Museum of Natural History Bulletin, 117, 121–176.
    Henrici, A. C. (1991). Chelomophrynus bayi (Amphibia, Anura, Rhinophrynidae), a new genus and species from the middle Eocene of Wyoming: ontogeny and relationships. Annals of Carnegie Museum, 60(2), 97–144.
    Henrici, A. C. (1998). A new pipoid anuran from the Late Jurassic Morrison Formation at Dinosaur National Monument, Utah. Journal of Vertebrate Paleontology, 18, 321–332.CrossRef
    Henrici, A. C. (2014). The evolutionary history of burrowing in North American Anura. Journal of Vertebrate Paleontology, Program and Abstracts, 2014, 146.
    Henrici, A. C., & Haynes, S. R. (2006). Elkobatrachus brocki, a new pelobatid (Amphibia: Anura) from the Eocene Elko Formation of Nevada and pelobatid relationships. Annals of Carnegie Museum, 75, 11–35.CrossRef
    Holman, J. A. (1963). A new rhinophrynid frog from the early Oligocene of Canada. Copeia, 4, 706–708.CrossRef
    Holman, J. A. (1968). Lower Oligocene amphibians from Saskatchewan. Florida Academy of Sciences, Quarterly Journal, 31(4), 273–289.
    Holman, J. A. (1970). A small Pleistocene herpetofauna from Tamaulipas. Florida Academy of Sciences, Quarterly Journal, 32, 153–158.
    Holman, J. A. (1972). Herpetofauna of the Calf Creek Local Fauna (lower Oligocene: Cypress Hills Formation) of Saskatchewan. Canadian Journal of Earth Sciences, 9, 1612–1631.CrossRef
    Holman, J. A. (2003). Fossil frogs and toads of North America. Bloomington and Indianapolis: Indiana University Press.
    Hutchison, J. H. (1992). Western North America reptile and amphibian record across the Eocene/Oligocene boundary and its climatic implications. In D. R. Prothero & W. A. Berggren (Eds.), Eocene-Oligocene climatic and biotic evolution (pp. 451–463). Princeton: Princeton University Press.
    Kellogg, R. (1932). Mexican tailless amphibians in the United States National Museum. United States National Museum Bulletin, 160, 1–224.
    Leckie, D. A., & Cheel, R. J. (1989). The Cypress Hills Formation (upper Eocene to Miocene): a semi-arid braidplain deposit resulting from intrusive uplift. Canadian Journal of Earth Sciences, 26, 1918–1931.CrossRef
    Lofgren, D. L., Lillegraven, J. A., Clemens, W. A., Gingerich, P. D., & Williamson, T. E. (2004). Paleocene biochronology: the Puercan through Clarkforkian Land Mammal ages. In M. O. Woodburne (Ed.), Late Cretaceous and Cenozoic mammals of North America (pp. 43–105). New York: Columbia University Press.
    Markwick, P. J. (1994). “Equability”, continentality, and Tertiary “climate”: the crocodilian perspective. Geology, 22, 613–616.CrossRef
    Markwick, P. J. (1998). Fossil crocodilians as indicators of Late Cretaceous and Cenozoic climates: implications for using palaeontological data in reconstructing palaeoclimate. Palaeogeography, Palaeoclimatology, Palaeoecology., 137, 205–271.CrossRef
    Noble, G. K. (1924). A new spadefoot toad from the Oligocene of Mongolia with a summary of the evolution of the Pelobatidae. American Museum Novitates, 132, 1–15.
    Pinder, A. W., Storey, K. B., & Ultsch, G. R. (1992). Estivation and hibernation. In M. E. Feder & W. W. Burggren (Eds.), Environmental Physiology of the Amphibians (pp. 250–276). Chicago and London: The University of Chicago Press.
    Potts, R., & Behrensmeyer, A. K. (1992). Late Cenozoic ecosystems. In A. K. Behrensmeyer, J. D. Damuth, W. A. DiMichele, R. Potts, H.-D. Sues, & S. L. Wing (Eds.), Terrestrial ecosystems through time, evolutionary paleoecology of terrestrial plants and animals (pp. 419–541). Chicago: University of Chicago Press.
    Prothero, D. R., & Emry, R. J. (2004). The Chadronian, Orellan, and Whitneyan North American Land Mammal ages. In M. O. Woodburne (Ed.), Late Cretaceous and Cenozoic mammals of North America (pp. 156–168). New York: Columbia University Press.
    Radhakrishnan, C., Gopi, K. C., & Palot, M. J. (2007). Extension of range of distribution of Nasikabatrachus sahyadrensis (Amphibia: Anura: Nasikabatrachidae) along the Western Ghats, with some insights into its bionomics. Current Science, 92(2), 213–216.
    Retallack, G. J. (1992). Paleosols and changes in climate and vegetation across the Eocene/Oligocene boundary. In D. R. Prothero & W. A. Berggren (Eds.), Eocene-Oligocene climatic and biotic evolution (pp. 382–298). Princeton: Princeton University Press.
    Robinson, P., Gunnell, G. F., Walsh, S. L., Clyde, W. C., Storer, J. E., Stucky, R. K., Froelich, D. J., Ferrusquia-Villafrance, I., & McKenna, M. C. (2004). Wasatchian through Duschesnean biochronology. In M. O. Woodburne (Ed.), Late Cretaceous and Cenozoic mammals of North America (pp. 106–155). New York: Columbia University Press.
    Roček, Z., & Rage, J.-C. (2000). Tertiary Anura of Europe, Africa, Asia, North America, and Australia. In H. Heatwole & R. L. Carroll (Eds.), Amphibian Biology (pp. 1332–1387). Chipping Norton: Surrey Beatty.
    Roček, Z., Dong, L., Přikryl, T., Sun, C., Tan, J., & Wang, Y. (2011). Fossil frogs (Anura) from Shanwang (middle Miocene; Shandong Province, China). Geobios, 44, 499–518.CrossRef
    Roček, Z., Wuttke, M., Gardner, J. D., & Bhullar, B.-A. S. (2014). The Euro-American genus Eopelobates, and a redefinition of the family Pelobatidae (Amphibia, Anura). Palaeobiodiversity and Palaeoenvironments, 94(4), 529–567.CrossRef
    Rose, W. (1950). The Reptiles and Amphibians of Southern Africa. Cape Town: Maskew Miller.
    Trueb, L., & Cannatella, D. C. (1982). The cranial osteology and hyolaryngeal apparatus of Rhinophrynus dorsalis (Anura: Rhinophrynidae) with comparisons to Recent pipid frogs. Journal of Morphology, 171, 11–40.CrossRef
    Trueb, L., & Gans, C. (1983). Feeding specializations of the Mexican burrowing toad, Rhinophrynus dorsalis (Anura: Rhinophrynidae). Journal of Zoology, London, 199, 189–208.CrossRef
    Wilf, P. (2000). Late Paleocene — early Eocene climate changes in southwestern Wyoming: paleobotanical evidence. Geological Society of America Bulletin, 112(2), 292–307.
    Wilf, P., Beard, K. C., Davies-Vollum, K. S., & Norejko, J. W. (1998). Portrait of a late Paleocene (early Clarkforkian) terrestrial ecosystem: Big Multi Quarry and associated strata, Washakie Basin, southwestern Wyoming. Palaios, 13, 514–532.CrossRef
    Woodburne, M. O., Gunnell, G. F., & Stucky, R. K. (2009). Climate directly influences Eocene mammal faunal dynamics in North America. Proceedings of the National Academy of Sciences, 106(32), 13399–13403.CrossRef
    Zanazzi, A., Kohn, M. J., MacFadden, B. J., & Terry, D. O., Jr. (2007). Large temperature drop across the Eocene-Oligocene transition in central North America. Nature, 445, 639–642.CrossRef
  • 作者单位:Amy C. Henrici (1)

    1. Section of Vertebrate Paleontology, Carnegie Museum of Natural History, 4400 Forbes Avenue, Pittsburgh, PA, 15213, USA
  • 刊物主题:Paleontology; Biodiversity; Animal Systematics/Taxonomy/Biogeography; Plant Systematics/Taxonomy/Biogeography; Freshwater & Marine Ecology;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1867-1608
文摘
The Rhinophrynidae, endemic to North America, are a highly specialised group of fossorial anurans that, despite a long geologic history, has low diversity. Today, rhinophrynids are represented by one taxon, Rhinophrynus dorsalis, which occurs in extreme southern Texas, USA, and southwards through Mexico and into Central America, in dry tropical to subtropical forests along coastal lowlands. The skeleton of R. dorsalis is highly specialised for burrowing and subterranean feeding, with individuals spending most of their time underground feeding on ants and termites and emerging only after periods of heavy rain to breed. In the fossil record, rhinophrynids with skeletons specialised for burrowing first appear in the late Paleocene (Tiffanian) of Wyoming, USA, and are subsequently known from the Western Interior of North America until the late Eocene (Chadronian), with the exception of one late Pleistocene occurrence in Mexico. From the late Paleocene (Tiffanian) until the present, rhinophrynids became more specialised for burrowing. The tibiale and fibulare became relatively shorter and stouter, the distal condyle of the femur became expanded and divided into two condyles, and the distal prehallux bone and distal phalanx of the first metatarsal were modified as spades by at least the middle Eocene (Uintan). Adaptations for feeding underground might have occurred as early as the middle Eocene (Bridgerian), as suggested by the elongate neural arch of Eorhinophrynus septentrionalis. The middle Eocene (Uintan) Chelomophrynus bayi shares several specialisations with Rhinophrynus dorsalis for feeding underground, so it is presumed that it too was a subterranean feeder. These specialisations include a somewhat protracted snout, lack of teeth on the jaws and vomers, forward shift of the jaw suspensorium and most likely the shoulder girdle, and possibly the structure of the hyoid apparatus. As the climate became more seasonal and subfreezing temperatures developed after the Eocene–Oligocene transition, rhinophrynids apparently never developed the ability to hibernate to avoid freezing and instead shifted their range south.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700