First-principles study of the structure, mechanical properties, and phase stability of crystalline zirconia under high pressure
详细信息    查看全文
  • 作者:Weihua Zhu (12) zhuwh@mail.njust.edu.cn
    Rongshan Wang (3)
    Guogang Shu (4)
    Ping Wu (5)
    Heming Xiao (12)
  • 关键词:Density functional theory &#8211 ; Zirconia crystals &#8211 ; Hydrostatic pressure &#8211 ; Crystal structure &#8211 ; Density of states &#8211 ; Mechanical properties &#8211 ; Phase stability
  • 刊名:Structural Chemistry
  • 出版年:2012
  • 出版时间:June 2012
  • 年:2012
  • 卷:23
  • 期:3
  • 页码:601-611
  • 全文大小:823.3 KB
  • 参考文献:1. Cuif J-P, Rohart E, Macaudi猫re P, Bauregard C, Suda E, Pacaud B, Imanaka N, Masui T, Tamura S (2005) In: Adachi G, Imanaka N, Kang ZC (eds) Applications: binary rare earth oxides, Chap 9. Kluwer, New York
    2. Bouvier P, Lucazeau G (2000) J Phys Chem Solids 61:569
    3. Bocanegra-Bernal MH, De la Torre SD (2002) J Mater Sci 37:4947
    4. Kelly PM, Rose LRF (2002) Prog Mater Sci 47:463
    5. Godlewski J, Bouvier P, Lucazeau G, Fayette L (2000) In: Sabol GP, Moan GD (eds) Zirconium in the nuclear industry. American Society for Testing and Materials, West Conshohocken, p 877
    6. Heuer AH, Lanteri V, Farmer SC, Chaim R, Lee RR, Kibbel BW, Dickerson RM (1989) J Mater Sci 24:124
    7. Arashi H, Yagi T, Akimoto S, Kudoh Y (1990) Phys Rev B 41:4309
    8. L茅ger JM, Tomaszewski PE, Atouf A, Pereira AS (1993) Phys Rev B 46:14075
    9. Ohtaka O, Yamanaka T, Yagi T (1994) Phys Rev B 49:9295
    10. Haines J, L茅ger JM, Atouf A (1995) J Am Ceram Soc 78:445
    11. Haines J, L茅ger JM, Hull S, Petitet JP, Pereira AS, Perottoni CA, da Jornada JAH (1997) J Am Ceram Soc 80:1910
    12. Desgreniers S, Lagarec K (1999) Phys Rev B 59:8467
    13. Bouvier P, Djurado E, Lucazeau G, Le Bihan T (2000) Phys Rev B 62:8731
    14. Ohtaka O, Fukui H, Kunisada T, Fujisawa T, Funakoshi K, Utsumi W, Irifune T, Kuroda K, Kikegawa T (2001) Phys Rev B 63:174108
    15. Ohtaka O, Andrault D, Bouvier P, Schultz E, Mezouar M (2005) J Appl Crystallogr 38:727
    16. Dewhurst JK, Lowther JE (1998) Phys Rev B 57:741
    17. Milman V, Perlov A, Refson K, Clark SJ, Gavartin J, Winkler B (2009) J Phys: Condens Matter 21:485404
    18. 脰zt眉rk H, Durandurdu M (2009) Phys Rev B 79:134111
    19. Al-Khatatbeh Y, Lee KKM, Kiefer B (2010) Phys Rev B 81:214102
    20. Fadda G, Zanzotto G, Colombo L (2010) Phys Rev B 82:064105
    21. Fadda G, Zanzotto G, Colombo L (2010) Phys Rev B 82:064106
    22. Vanderbilt D (1990) Phys Rev B 41:7892
    23. Payne MC, Teter MP, Allan DC, Arias TA, Joannopoulos JD (1992) Rev Mod Phys 64:1045
    24. Kresse G, Furthm眉ller J (1996) Phys Rev B 54:11169
    25. Fischer TH, Almlof J (1992) J Phys Chem 96:9768
    26. Perdew JP, Wang Y (1992) Phys Rev B 49:13244
    27. Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Phys Rev B 46:6671
    28. Smith DK, Newkirk HW (1965) Acta Crystallogr 18:983
    29. Igawa N, Ishii Y, Nagasaki T, Morii Y, Funahashi S, Ohno H (1993) J Am Ceram Soc 76:2673
    30. Aldebert P, Traverse J-P (1985) J Am Ceram Soc 68:34
    31. Ashcroft NW, Mermin ND (1976) Solid state physics. Saunders College, Philadelphia
    32. Mantz YA, Gemmen RS (2010) J Phys Chem C 114:8014
    33. Fadda G, Colombo L, Zanzotto G (2009) Phys Rev B 79:214102
    34. Zhu WH, Wang RS, Shu GG, Wu P, Xiao HM (2010) J Phys Chem C 114:22361
    35. Nevitt MV, Chan S, Liu JZ, Grinsditch MH, Fang Y (1988) Physica B 152:231
    36. Kisi EH, Howard CJ (1998) J Am Ceram Soc 81:1682
    37. Kandil HM, Greiner D, Smith JF (1984) J Am Ceram Soc 67:341
    38. Pugh SF (1954) Philos Mag 45:823
    39. Ghosh G, Asta M (2005) Acta Mater 53:3225
    40. Mishin Y, Mehl MJ, Papaconstantopoulos DA (2005) Acta Mater 53:4029
    41. Ghosh G, Delsante S, Borzone G, Asta M, Ferro R (2006) Acta Mater 54:4977
  • 作者单位:1. Institute for Computation in Molecular and Materials Science, Department of Chemistry, Nanjing University of Science and Technology, Nanjing, 210094 China2. Department of Chemistry, Nanjing University of Science and Technology, Nanjing, 210094 China3. Suzhou Nuclear Power Research Institute, Suzhou, 215004 China4. China Nuclear Power Engineering Company LTD, Shenzhen, 518031 China5. Institute of High Performance Computing, 1 Fusionopolis Way, #16-16 Connexis, Singapore, 138632 Singapore
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Computer Applications in Chemistry
    Physical Chemistry
    Theoretical and Computational Chemistry
  • 出版者:Springer Netherlands
  • ISSN:1572-9001
文摘
We presented a detailed study on the structure, mechanical properties, and phase stability for three zirconia crystals under hydrostatic pressure of 0–100 GPa by using density functional theory within the generalized gradient approximation. It is found that m-ZrO2 presents three phase transitions with increasing pressure, while t-ZrO2 and c-ZrO2 do not. As the pressure increases, the band gap of m-ZrO2 presents three abrupt changes. The band gap of t-ZrO2 firstly decreases and then increases slowly. The band gap of c-ZrO2 increases monotonically. An analysis of elastic constants shows that the three oxides are anisotropic under compression with increasing pressure. As the pressure increases, their fracture strength and plastic strength are improved and they are all ductile. The calculated formation enthalpies suggest that the elements (Zr + O2) are able to form m-ZrO2, t-ZrO2, or c-ZrO2 in the whole pressure range, indicating that zirconium and its alloys are easy to be oxidized.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700