Crystal Structure and Morphology of Nanocrystalline TiN Thin Films
详细信息    查看全文
  • 作者:C. V. Ramana (12) rvchintalapalle@utep.edu
    S. White (1)
    N. Esparza (12)
    V. Rangel (12)
    A. L. Campbell (3)
  • 关键词:TiN films &#8211 ; reactive sputtering &#8211 ; crystal structure &#8211 ; texturing &#8211 ; lattice constant morphology
  • 刊名:Journal of Electronic Materials
  • 出版年:2012
  • 出版时间:November 2012
  • 年:2012
  • 卷:41
  • 期:11
  • 页码:3139-3144
  • 全文大小:464.5 KB
  • 参考文献:1. H. Ljungcrantz, M. Oden, L. Hultman, J.E. Greene, and J.E. Sundgren, J. Appl. Phys. 80, 6725 (1996).
    2. W.F. Wu, K.C. Tsai, C.G. Chao, J.C. Chen, and K.L. Ou, J. Electron. Mater. 446, 184 (2004).
    3. D. Gall, S. Kodambaka, M.A. Wall, I. Petrov, and J.E. Greene, J. Appl. Phys. 93, 9086 (2003).
    4. G. Abadias, Surf. Coat. Technol. 202, 2223 (2008).
    5. R. Banerjee, R. Chandra, and P. Ayyub, Thin Solid Films 405, 64 (2002).
    6. C. Ziebert and S. Ulrich, J. Vac. Sci. Technol. A 24, 554 (2006).
    7. I. Petrov, P.B. Barna, L. Hultman, and J.E. Greene, J. Vac. Sci. Technol. A 21, S117 (2003).
    8. W.J. Meng and T.J. Curtis, J. Electron. Mater. 515, 1229 (2006).
    9. G. Abadias, Y.Y. Tse, Ph. Guerin, and V. Pelosin, J. Appl. Phys. 99, 113519 (2006).
    10. H. Wang, A. Gupta, A. Tiwari, X. Zhang, and J. Narayan, J. Electron. Mater. 32, 994 (2003).
    11. M. Marlo and V. Milman, Phys. Rev. B 62, 2899 (2000).
    12. T.Q. Li, S. Noda, H. Komiyama, T. Yamamoto, and Y. Ikuhara, J. Vac. Sci. Technol. A 21, 1717 (2003).
    13. Y.H. Cheng and B.K. Tay, J. Cryst. Growth 252, 257 (2003).
    14. S. Kadlec, J. Musil, and J. Vyskcil, Surf. Coat. Technol. 54/55, 249 (1992).
    15. N. Kalfagiannis and S. Logothetidis, Rev. Adv. Mater. Sci. 15, 167 (2001).
    16. S. Niyomsoan, W. Grant, D.L. Olson, and B. Mishra, Thin Solid Films 415, 187 (2002).
    17. S. Piscanec, L.C. Ciacchi, E. Vesselli, G. Comelli, O. Sbaizero, S. Meriani, and A. De Vita, Acta Mater. 52, 1237 (2004).
    18. M.T. Raimondi and R. Pietrabissa, Biomaterials 21, 907 (2000).
    19. J.S. Chun, I. Petrov, and J.E. Greene, J. Appl. Phys. 86, 3633 (1999).
    20. L. Gao, J. Gst枚ttner, R. Emling, M. Balden, Ch. Linsmeier, A. Wiltner, W. Hansch, and D. Schmitt-Landsiedel, Microelectron. Eng. 76, 76 (2004).
    21. M. Moriyama, T. Kawazoe, M. Tanaka, and M. Murakami, Thin Solid Films 416, 136 (2002).
    22. G.M. Matnenoglou, S. Logothetidis, and S. Kassavetis, Thin Solid Films 511–512, 453 (2006).
    23. Y. Pihosh, M. Goto, A. Kasahara, T. Oishi, and M. Tosa, Appl. Surf. Sci. 244, 244 (2005).
    24. J.-E. Sundgren, Thin Solid Films 128, 21 (1985).
    25. M. Kobayashi and Y. Doi, Thin Solid Films 111, 259 (1984).
    26. S. Dong, X. Chen, L. Gu, X. Zhou, H. Xu, H. Wang, Z. Liu, P. Han, J. Yao, L. Wang, G. Cui, and L. Chen, ACS Appl. Mater. Interfaces 3, 93 (2011).
    27. X. Lin, G. Zhao, L. Wu, G. Duan, and G. Han, J. Alloys Compd. 502, 195 (2010).
    28. M.M. Ottakam Thotiyl, T. Ravi Kumar, and S. Sampath, J. Phys. Chem. C 114, 17934 (2010).
    29. K. Vasu, M. Ghanashyam Krishna, and K.A. Padmanabhan, Thin Solid Films 519, 7702 (2011).
    30. H. Xu, X. Zhang, C. Zhang, Z. Liu, X. Zhou, S. Pang, X. Chen, S. Dong, Z. Zhang, L. Zhang, P. Han, X. Wang, and G. Cui, ACS Appl. Mater. Interfaces 4, 1087 (2012).
    31. L.P.B. Lima, J.A. Diniz, I. Doi, and J. Godoy Fo, Microelectron. Eng. 92, 86 (2012).
    32. D.P. Tracy, D.B. Knorr, and K.P. Rodbell, J. Appl. Phys. 76, 2671 (1994).
    33. K. Abe, Y. Harada, and H. Onoda, Appl. Phys. Lett. 71, 2782 (1997).
    34. J. Pelleg, L.Z. Zevin, and S. Lungo, Thin Solid Films 197, 117 (1991).
    35. J.E. Greene, J.-E. Sundgren, L. Hultman, I. Petrov, and D.B. Bergstrom, Appl. Phys. Lett. 67, 2928 (1995).
    36. L. Hultman, J.-E. Sundgren, J.E. Greene, D.B. Bergstrom, and I. Petrov, J. Appl. Phys. 78, 5395 (1995).
    37. P. Patsalas, C. Charitidis, and S. Logothetidis, Surf. Coat. Technol. 125, 335 (2000).
    38. S. Mahieu, P. Ghekiere, G. De Winter, R. De Gryse, D. Depla, G. Van Tendeloo, and O.I. Lebedev, Surf. Coat. Technol. 200, 2764 (2006).
    39. S. Mahieu, P. Ghekiere, G. De Winter, S. Heirwegh, D. Depla, R. De Gryse, O.I. Lebedev, and G. Van Tendeloo, J. Cryst. Growth 279, 100 (2005).
    40. M. Guemmaz, A. Mosser, R. Ahuja, and J.C. Parlebas, Int. J. Inorg. Mater. 3, 1319 (2001).
    41. J.P. Dekker, P.J. van der Put, H.J. Veringa, and J. Schoonman, J. Mater. Chem. 4, 689 (1994).
    42. S. Nagakura and T. Kusunoki, J. Appl. Crystallogr. 10, 52 (1977).
  • 作者单位:1. Department of Mechanical Engineering, University of Texas at El Paso, El Paso, TX 79968, USA2. Department of Materials Science and Engineering, University of Texas at El Paso, El Paso, TX 79968, USA3. Materials and Manufacturing Directorate (RX), Wright-Patterson Air Force Base (WPAFB), Wright-Patterson Air Force Base, OH 45433, USA
  • ISSN:1543-186X
文摘
Titanium nitride (TiN) thin films were grown employing radiofrequency (RF) magnetron sputtering under varying nitrogen gas flow rates. Characterization of the grown materials was done by grazing-incidence x-ray diffraction and scanning electron microscopy. The results indicate that the crystal structure and texture of the grown TiN layers are dependent on the ratio of nitrogen to argon in the reactive gas mixture during deposition. TiN coatings initially showed (111) preferred orientation, then mixed (111) and (002) texturing, followed by completely (002) texturing with increasing nitrogen content. The analyses indicate that the nitrogen incorporation into the layers and the associated chemistry determine the texturing and lattice parameters.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700