Escapes in Hamiltonian systems with multiple exit channels: part II
详细信息    查看全文
  • 作者:Euaggelos E. Zotos
  • 关键词:Hamiltonian systems ; Harmonic oscillators ; Numerical simulations ; Escapes ; Fractals
  • 刊名:Nonlinear Dynamics
  • 出版年:2015
  • 出版时间:October 2015
  • 年:2015
  • 卷:82
  • 期:1-2
  • 页码:357-398
  • 全文大小:24,998 KB
  • 参考文献:1.Aguirre, J., Vallejo, J.C., Sanju谩n, M.A.F.: Wada basins and chaotic invariant sets in the H茅non鈥揌eiles system. Phys. Rev. E 64, 066208-1鈥?1 (2001)
    2.Aguirre, J., Sanju谩n, M.A.F.: Limit of small exits in open Hamiltonian systems. Phys. Rev. E 67, 056201-1-7 (2003)CrossRef
    3.Aguirre, J., Vallejo, J.C., Sanju谩n, M.A.F.: Wada basins and unpredictability in Hamiltonian and dissipative systems. Int. J. Mod. Phys. B 17, 4171鈥?175 (2003)CrossRef MATH
    4.Aguirre, J., Viana, R.L., Sanju谩n, M.A.F.: Fractal structures in nonlinear dynamics. Rev. Mod. Phys. 81, 333鈥?86 (2009)CrossRef
    5.Arribas, M., Elipe, A., Floria, L., Riaguas, A.: Oscillators in resonance \(p\) :\(q\) :\(r\) . Chaos Solitons Fractals 27, 1220鈥?228 (2006)MathSciNet CrossRef MATH
    6.Barrio, R., Blesa, F., Serrano, S.: Fractal structures in the H茅non鈥揌eiles Hamiltonian. Europhys. Lett. 82, 10003-1-6 (2008)CrossRef
    7.Barrio, R., Blesa, F., Serrano, S.: Bifurcations and safe regions in open Hamiltonians. New J. Phys. 11, 053004-1-12 (2009)CrossRef
    8.Benet, L., Trautman, D., Seligman, T.: Chaotic scattering in the restricted three-body problem. I. The copenhagen problem. Celest. Mech. Dyn. Astron. 66, 203鈥?28 (1996)CrossRef
    9.Benet, L., Seligman, T., Trautman, D.: Chaotic scattering in the restricted three-body problem II. Small mass parameters. Celest. Mech. Dyn. Astron. 71, 167鈥?89 (1998)CrossRef
    10.Bleher, S., Grebogi, C., Ott, E., Brown, R.: Fractal boundaries for exit in Hamiltonian dynamics. Phys. Rev. A 38, 930鈥?38 (1988)MathSciNet CrossRef
    11.Bleher, S., Grebogi, C., Ott, E.: Bifurcation to chaotic scattering. Phys. D 46, 87鈥?21 (1990)MathSciNet CrossRef MATH
    12.Bleher, S., Ott, E., Grebogi, C.: Routes to chaotic scattering. Phys. Rev. Lett. 63, 919鈥?22 (1989)CrossRef
    13.Boyd, P.T., McMillan, S.L.W.: Initial-value space structure in irregular gravitational scattering. Phys. Rev. A 46, 6277鈥?287 (1992)CrossRef
    14.Blesa, F., Seoane, J.M., Barrio, R., Sanju谩n, M.A.F.: To escape or not to escape, that is the question鈥攑erturbing the H茅non鈥揌eiles Hamiltonian. Int. J. Bifurc. Chaos 22, 1230010-1-9 (2012)CrossRef
    15.Bl眉mel, R., Smilansky, U.: Random-matrix description of chaotic scattering: semi-classical approach. Phys. Rev. Lett. 64, 241鈥?44 (1990)MathSciNet CrossRef MATH
    16.Caranicolas, N.D., Zotos, E.E.: Investigating the nature of motion in 3D perturbed elliptic oscillators displaying exact periodic orbits. Nonlinear Dyn. 69, 1795鈥?805 (2012)MathSciNet CrossRef
    17.Carpintero, D.D., Maffione, N., Darriba, L.: LP-VIcode: a program to compute a suite of variational chaos indicators. Astron. Comput. 5, 19鈥?7 (2014)CrossRef
    18.Chen, Q., Ding, M., Ott, E.: Chaotic scattering in several dimensions. Phys. Lett. A 145, 93鈥?00 (1990)MathSciNet CrossRef
    19.Churchill, R.C., et al. In: Casati, G., Fords, J. (eds.) Como Conference Proceedings on Stochastic Behavior in Classical and Quantum Hamiltonian Systems, Volume 93, Lecture Notes in Physics, p. 76. Springer, Berlin (1979)
    20.Churchill, R., Pecelli, G., Rod, D.: Isolated unstable periodic orbits. J. Differ. Equ. 17, 329鈥?48 (1975)MathSciNet CrossRef MATH
    21.Contopoulos, G.: Asymptotic curves and escapes in Hamiltonian systems. Astron. Astrophys. 231, 41鈥?5 (1990)MathSciNet
    22.Contopoulos, G.: Order and Chaos in Dynamical Astronomy. Springer, Berlin (2002)CrossRef MATH
    23.Contopoulos, G., Efstathiou, K.: Escapes and recurrence in a simple Hamiltonian system. Celest. Mech. Dyn. Astron. 88, 163鈥?83 (2004)MathSciNet CrossRef MATH
    24.Contopoulos, G., Kaufmann, D.: Types of escapes in a simple Hamiltonian system. Astron. Astrophys. 253, 379鈥?88 (1992)MathSciNet MATH
    25.Contopoulos, G., Kandrup, H.E., Kaufmann, D.: Fractal properties of escape from a two-dimensional potential. Phys. D 64, 310鈥?23 (1993)CrossRef MATH
    26.Contopoulos, G., Harsoula, M., Lukes-Gerakopoulos, G.: Periodic orbits and escapes in dynamical systems. Celest. Mech. Dyn. Astron. 113, 255鈥?78 (2012)MathSciNet CrossRef
    27.de Moura, A.P.S., Letelier, P.S.: Fractal basins in H茅non鈥揌eiles and other polynomial potentials. Phys. Lett. A 256, 362鈥?68 (1999)MathSciNet CrossRef
    28.Deprit, A.: The Lissajous transformation. I. Basics. Celest. Mech. Dyn. Astron. 51, 202鈥?25 (1991)
    29.Deprit, A., Elipe, A.: The Lissajous transformation. II. Normalization. Celest. Mech. Dyn. Astron. 51, 227鈥?50 (1991)MathSciNet CrossRef MATH
    30.Ding, M., Grebogi, C., Ott, E., Yorke, J.A.: Transition to chaotic scattering. Phys. Rev. A 42, 7025鈥?040 (1990)MathSciNet CrossRef
    31.Eckhardt, B.: Fractal properties of scattering singularities. J. Phys. A 20, 5971鈥?979 (1987)MathSciNet CrossRef
    32.Eckhardt, B.: Irregular scattering. Phys. D 33, 89鈥?8 (1988)MathSciNet CrossRef MATH
    33.Eckhardt, B., Jung, C.: Regular and irregular potential scattering. J. Phys. A 19, L829鈥揕833 (1986)MathSciNet CrossRef MATH
    34.Elipe, A.: Complete reduction of oscillators in resonance \(p:q\) . Phys. Rev. E 61, 6477鈥?484 (2000)CrossRef
    35.Elipe, A., Deprit, A.: Oscillators in resonance. Mech. Res. Commun. 26, 635鈥?40 (1999)MathSciNet CrossRef MATH
    36.Ferrer, S., Lara, M., Palaci谩n, J., Juan, J.S., Viartola, A., Yanguas, P.: The H茅non鈥揌eiles problem in three dimensions. I. Periodic orbits near the origin. Int. J. Bifurc. Chaos 8, 1199鈥?213 (1998)CrossRef MATH
    37.Ferrer, S., Lara, M., Palaci谩n, J., Juan, J.S., Viartola, A., Yanguas, P.: The H茅non鈥揌eiles problem in three dimensions. II. Relative equilibria and bifurcations in the reduced problem. Int. J. Bifurc. Chaos 8, 1215鈥?229 (1998)CrossRef MATH
    38.Gaspard, P., Rice, S.A.: Scattering from a classically chaotic repellor. J. Chem. Phys. 90, 2225鈥?241 (1989)MathSciNet CrossRef
    39.Giorgilli, A., Galgani, L.: From integrals from an autonomous Hamiltonian system near an equilibrium point. Celest. Mech. 17, 267鈥?80 (1978)MathSciNet CrossRef MATH
    40.H茅non, M., Heiles, C.: The applicability of the third integral of motion: some numerical experiments. Astron. J. 69, 73鈥?9 (1964)CrossRef
    41.H茅non, M.: Numerical exploration of the restricted problem. V. Astron. Astrophys. 1, 223鈥?38 (1969)MATH
    42.H茅non, M.: Chaotic scattering modelled by an inclined billiard. Phys. D 33, 132鈥?56 (1988)MathSciNet CrossRef MATH
    43.Howard, J.E., Meiss, J.D.: Straight line orbits in Hamiltonian flows. Celest. Mech. Dyn. Astron. 105, 337鈥?52 (2009)MathSciNet CrossRef MATH
    44.Jos茅, J.V., Rojas, C., Saletan, E.J.: Elastic particle scattering from two hard disks. Am. J. Phys. 60, 587鈥?92 (1992)CrossRef
    45.Jung, C.: Can the integrability of Hamiltonian systems be decided by the knowledge of scattering data? J. Phys. A 20, 1719鈥?732 (1987)MathSciNet CrossRef MATH
    46.Jung, C.: Iterated scattering map for rearrangement scattering. J. Phys. A 24, 1741鈥?750 (1991)MathSciNet CrossRef MATH
    47.Jung, C., Lipp, C., Seligman, T.H.: The inverse scattering problem for chaotic Hamiltonian systems. Ann. Phys. 275, 151鈥?89 (1999)MathSciNet CrossRef MATH
    48.Jung, C., Mejia-Monasterio, C., Seligman, T.H.: Scattering one step from chaos. Phys. Lett. A 198, 306鈥?14 (1995)CrossRef
    49.Jung, C., Pott, S.: Classical cross section for chaotic potential scattering. J. Phys. A 22, 2925鈥?938 (1989)MathSciNet CrossRef MATH
    50.Jung, C., Richter, P.H.: Classical chaotic scattering-periodic orbits, symmetries, multifractal invariant sets. J. Phys. A 23, 2847鈥?866 (1990)MathSciNet CrossRef MATH
    51.Jung, C., Scholz, H.J.: Cantor set structures in the singularities of classical potential scattering. J. Phys. A 20, 3607鈥?618 (1987)MathSciNet CrossRef MATH
    52.Jung, C., Tel, T.: Dimension and escape rate of chaotic scattering from classical and semiclassical cross section data. J. Phys. A 24, 2793鈥?805 (1991)CrossRef
    53.Kandrup, H.E., Siopis, C., Contopoulos, G., Dvorak, R.: Diffusion and scaling in escapes from two-degrees-of-freedom Hamiltonian systems. Chaos 9, 381鈥?92 (1999)MathSciNet CrossRef MATH
    54.Karanis, G.I., Vozikis, ChL: Fast detection of chaotic behavior in galactic potentials. Astron. Nachr. 329, 403鈥?12 (2007)CrossRef
    55.Kennedy, J., Yorke, J.A.: Basins of Wada. Phys. D 51, 213鈥?25 (1991)MathSciNet CrossRef MATH
    56.Lai, Y.-C., de Moura, A.P.S., Grebogi, C.: Topology of high-dimensional chaotic scattering. Phys. Rev. E 62, 6421鈥?428 (2000)MathSciNet CrossRef
    57.Lai, Y.-C., Grebogi, C., Bl眉mel, R., Kan, I.: Crisis in chaotic scattering. Phys. Rev. Lett. 71, 2212鈥?215 (1993)CrossRef
    58.Lau, Y.-T., Finn, J.M., Ott, E.: Fractal dimension in nonhyperbolic chaotic scattering. Phys. Rev. Lett. 66, 978鈥?81 (1991)MathSciNet CrossRef MATH
    59.Lipp, C., Jung, C.: From scattering singularities to the partition of a horseshoe. Chaos 9, 706鈥?14 (1999)MathSciNet CrossRef MATH
    60.Motter, A.E., Lai, Y.C.: Dissipative chaotic scattering. Phys. Rev. E 65, R015205-1-4 (2002)
    61.Navarro, J.F., Henrard, J.: Spiral windows for escaping stars. Astron. Astrophys. 369, 1112鈥?121 (2001)CrossRef
    62.Nusse, H.E., Yorke, J.A.: Wada basin boundaries and basin cells. Phys. D 90, 242鈥?61 (1996)MathSciNet CrossRef MATH
    63.Ott, E.: Chaos in Dynamical Systems. Cambridge University Press, Cambridge (1993)MATH
    64.Ott, E., T茅l, T.: Chaotic scattering: an introduction. Chaos 3, 417鈥?26 (1993)CrossRef
    65.Petit, J.-M., H茅non, M.: Satellite encounters. Icarus 66, 536鈥?55 (1986)CrossRef
    66.Poon, L., Campos, J., Ott, E., Grebogi, C.: Wada basins boundaries in chaotic scattering. Int. J. Bifurc. Chaos 6, 251鈥?66 (1996)MathSciNet CrossRef MATH
    67.Press, H.P., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in FORTRAN 77, 2nd edn. Cambridge University Press, Cambridge (1992)
    68.R眉ckerl, B., Jung, C.: Scaling properties of a scattering system with an incomplete horseshoe. J. Phys. A 27, 55鈥?7 (1994)MathSciNet CrossRef MATH
    69.Saito, N., Ichimura, A. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems. Lecture Notes in Physics, vol. 93, p. 137. Springer, Berlin (1979)
    70.Schneider, J., T茅l, T., Neufeld, Z.: Dynamics of 鈥渓eaking鈥?Hamiltonian systems. Phys. Rev. E 66, 066218-1-6 (2002)CrossRef
    71.Seoane, J.M., Aguirre, J., Sanju谩n, M.A.F., Lai, Y.C.: Basin topology in dissipative chaotic scattering. Chaos 16, 023101-1-8 (2006)CrossRef
    72.Seoane, J.M., Sanju谩n, M.A.F., Lai, Y.C.: Fractal dimension in dissipative chaotic scattering. Phys. Rev. E 76, 016208-1-6 (2007)CrossRef
    73.Seoane, J.M., Sanju谩n, M.A.F.: Exponential decay and scaling laws in noisy chaotic scattering. Phys. Lett. A 372, 110鈥?16 (2008)CrossRef MATH
    74.Seoane, J.M., Huang, L., Sanju谩n, M.A.F., Lai, Y.C.: Effects of noise on chaotic scattering. Phys. Rev. E 79, 047202-1-4 (2009)CrossRef
    75.Seoane, J.M., Sanju谩n, M.A.F.: Escaping dynamics in the presence of dissipation and noisy in scattering systems. Int. J. Bifurc. Chaos 9, 2783鈥?793 (2010)CrossRef
    76.Siopis, C.V., Contopoulos, G., Kandrup, H.E.: Escape probabilities in a Hamiltonian with two channels of escape. N. Y. Acad. Sci. Ann. 751, 205鈥?12 (1995)CrossRef
    77.Siopis, C.V., Kandrup, H.E., Contopoulos, G., Dvorak, R.: Universal properties of escape. N. Y. Acad. Sci. Ann. 773, 221鈥?30 (1995)CrossRef
    78.Siopis, C.V., Kandrup, H.E., Contopoulos, G., Dvorak, R.: Universal properties of escape in dynamical systems. Celest. Mech. Dyn. Astron. 65, 57鈥?81 (1996)MathSciNet CrossRef
    79.Skokos, C.: Alignment indices: a new, simple method for determining the ordered or chaotic nature of orbits. J. Phys. A Math. Gen. 34, 10029鈥?0043 (2001)MathSciNet CrossRef MATH
    80.Sweet, D., Ott, E.: Fractal basin boundaries in higher-dimensional chaotic scattering. Phys. Lett. A 266, 134鈥?39 (2000)MathSciNet CrossRef MATH
    81.Taylor, J.R.: Scattering Theory: The Quantum Theory on Nonrelativistic Collisions. Wiley, New York (1976)
    82.Zotos, E.E.: Application of new dynamical spectra of orbits in Hamiltonian systems. Nonlinear Dyn. 69, 2041鈥?063 (2012)MathSciNet CrossRef
    83.Zotos, E.E.: The Fast Norm Vector Indicator (FNVI) method: a new dynamical parameter for detecting order and chaos in Hamiltonian systems. Nonlinear Dyn. 70, 951鈥?78 (2012)MathSciNet CrossRef
    84.Zotos, E.E.: Revealing the evolution, the stability and the escapes of families of resonant periodic orbits in Hamiltonian systems. Nonlinear Dyn. 73, 931鈥?62 (2013)MathSciNet CrossRef
    85.Zotos, E.E.: A Hamiltonian system of three degrees of freedom with eight channels of escape: the Great Escape. Nonlinear Dyn. 76, 1301鈥?326 (2014)MathSciNet CrossRef
    86.Zotos, E.E.: Escapes in Hamiltonian systems with multiple exit channels: part I. Nonlinear Dyn. 78, 1389鈥?420 (2014)MathSciNet CrossRef
    87.Zotos, E.E., Caranicolas, N.D.: Are semi-numerical methods an effective tool for locating periodic orbits in 3D potentials? Nonlinear Dyn. 70, 279鈥?87 (2012)MathSciNet CrossRef
    88.Zotos, E.E., Caranicolas, N.D.: Order and chaos in a new 3D dynamical model describing motion in non-axially symmetric galaxies. Nonlinear Dyn. 74, 1203鈥?221 (2013)MathSciNet CrossRef
  • 作者单位:Euaggelos E. Zotos (1)

    1. Department of Physics, School of Science, Aristotle University of Thessaloniki, 541 24, Thessalon铆ki, Greece
  • 刊物类别:Engineering
  • 刊物主题:Vibration, Dynamical Systems and Control
    Mechanics
    Mechanical Engineering
    Automotive and Aerospace Engineering and Traffic
  • 出版者:Springer Netherlands
  • ISSN:1573-269X
文摘
We explore the escape dynamics in open Hamiltonian systems with multiple channels of escape continuing the work initiated in Part I. A thorough numerical investigation is conducted distinguishing between trapped (ordered and chaotic) and escaping orbits. The determination of the location of the basins of escape toward the different escape channels and their correlations with the corresponding escape periods of the orbits is undoubtedly an issue of paramount importance. We consider four different cases depending on the perturbation function which controls the number of escape channels on the configuration space. In every case, we computed extensive samples of orbits in both the configuration and the phase space by numerically integrating the equations of motion as well as the variational equations. It was found that in all examined cases, regions of non-escaping motion coexist with several basins of escape. The larger escape periods have been measured for orbits with initial conditions in the vicinity of the fractal structure, while the lowest escape rates belong to orbits with initial conditions inside the basins of escape. In addition, we related the model potential with applications in the field of reactive multichannel scattering. We hope that our numerical analysis will be useful for a further understanding of the escape mechanism of orbits in open Hamiltonian systems with two degrees of freedom. Keywords Hamiltonian systems Harmonic oscillators Numerical simulations Escapes Fractals

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700