Of yeast, mice and men: MAMs come in two flavors
详细信息    查看全文
文摘
The past decade has seen dramatic progress in our understanding of membrane contact sites (MCS). Important examples of these are endoplasmic reticulum (ER)-mitochondria contact sites. ER-mitochondria contacts have originally been discovered in mammalian tissue, where they have been designated as mitochondria-associated membranes (MAMs). It is also in this model system, where the first critical MAM proteins have been identified, including MAM tethering regulators such as phospho-furin acidic cluster sorting protein 2 (PACS-2) and mitofusin-2. However, the past decade has seen the discovery of the MAM also in the powerful yeast model system Saccharomyces cerevisiae. This has led to the discovery of novel MAM tethers such as the yeast ER-mitochondria encounter structure (ERMES), absent in the mammalian system, but whose regulators Gem1 and Lam6 are conserved. While MAMs, sometimes referred to as mitochondria-ER contacts (MERCs), regulate lipid metabolism, Ca2+ signaling, bioenergetics, inflammation, autophagy and apoptosis, not all of these functions exist in both systems or operate differently. This biological difference has led to puzzling discrepancies on findings obtained in yeast or mammalian cells at the moment. Our review aims to shed some light onto mechanistic differences between yeast and mammalian MAM and their underlying causes.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700