Acyl peptidic siderophores: structures, biosyntheses and post-assembly modifications
详细信息    查看全文
  • 作者:Michelle P. Kem ; Alison Butler
  • 关键词:Amphiphilic siderophore ; Biosynthesis ; Acyl peptide ; Post ; assembly modification
  • 刊名:Biometals
  • 出版年:2015
  • 出版时间:June 2015
  • 年:2015
  • 卷:28
  • 期:3
  • 页码:445-459
  • 全文大小:1,436 KB
  • 参考文献:Barbeau K, Rue E, Bruland K, Butler A (2001) Photochemical cycling of iron in the surface ocean mediated by microbial iron(III)-binding ligands. Nature 413(6854):409-13. doi:10.-038/-5096545 View Article PubMed
    Barbeau K, Rue E, Trick C, Bruland K, Butler A (2003) Photochemical reactivity of siderophores produced by marine heterotrophic bacteria and cyanobacteria based on characteristic Fe(III) binding groups. Limnol Oceanogr 48(3):1069-078View Article
    Bokhove M, Jimenez P, Quax W, Dijkstra B (2010) The quorum-quenching N-acyl homoserine lactone acylase PvdQ is an Ntn-hydrolase with an unusual substrate-binding pocket. Proc Natl Acad Sci USA 107(2):686-91. doi:10.-073/?pnas.-911839107 View Article PubMed Central PubMed
    Butler A, Theisen R (2010) Iron(III)-siderophore coordination chemistry: reactivity of marine siderophores. Coord Chem Rev 254(3-):288-96. doi:10.-016/?j.?ccr.-009.-9.-10 View Article PubMed Central PubMed
    Challis G, Ravel J, Townsend C (2000) Predictive, structure-based model of amino acid recognition by nonribosomal peptide synthetase adenylation domains. Chem Biol 7(3):211-24. doi:10.-016/?S1074-5521(00)00091-0 View Article PubMed
    Cisar J, Tan D (2008) Small molecule inhibition of microbial natural product biosynthesis—an emerging antibiotic strategy. Chem Soc Rev 37(7):1320-329View Article PubMed Central PubMed
    Clevenger K, Wu R, Er J, Liu D, Fast W (2013) Rational design of a transition state analogue with picomolar affinity for Pseudomonas aeruginosa PvdQ, a siderophore biosynthetic enzyme. ACS Chem Biol 8(10):2192-200. doi:10.-021/?cb400345h View Article PubMed
    Crosa J, Walsh C (2002) Genetics and assembly line enzymology of siderophore biosynthesis in bacteria. Microbiol Mol Biol Rev 66(2):223-49. doi:10.-128/?MMBR.-6.-.-23-249.-002
    Drake E, Gulick A (2011) Structural characterization and high-throughput screening of inhibitors of PvdQ, an NTN hydrolase involved in pyoverdine synthesis. ACS Chem Biol 6(11):1277-286. doi:10.-021/?cb2002973 View Article PubMed Central PubMed
    Engelhart C, Aldrich C (2013) Synthesis of chromone, quinolone, and benzoxazinone sulfonamide nucleosides as conformationally constrained inhibitors of adenylating enzymes required for siderophore biosynthesis. J Org Chem 78(15):7470-481View Article PubMed Central PubMed
    Ferreras J, Ryu J-S, Di Lello F, Tan D, Quadri L (2005) Small-molecule inhibition of siderophore biosynthesis in Mycobacterium tuberculosis and Yersinia pestis. Nat Chem Biol 1(1):29-2. doi:10.-038/?nchembio706 View Article PubMed
    Gauglitz J, Butler A (2013) Amino acid variability in the peptide composition of a suite of amphiphilic peptide siderophores from an open ocean Vibrio species. J Biol Inorg Chem 18(5):489-97. doi:10.-007/?s00775-013-0995-3 View Article PubMed Central PubMed
    Gauglitz J, Inishi A, Ito Y, Butler A (2014) Microbial tailoring of acyl peptidic siderophores. Biochemistry 53(16):2624-631. doi:10.-021/?bi500266x View Article PubMed Central PubMed
    Gehring A, Mori I, Walsh C (1998) Reconstitution and characterization of the Escherichia coli enterobactin synthetase from EntB, EntE, and EntF. Biochemistry 37(8):2648-659. doi:10.-021/?bi9726584 View Article PubMed
    Gobin J, Horwitz M (1996) Exochelins of Mycobacterium tuberculosis remove iron from human iron-binding proteins and donate iron to mycobactins in the M. tuberculosis cell wall. J Exp Med 183(4):1527-532. doi:10.-084/?jem.-83.-.-527 View Article PubMed
    Gobin J, Moore C, Reeve J, Wong D, Gibson B, Horwitz M (1995) Iron acquisition by Mycobacterium tuberculosis: isolation and characterization of a family of iron-binding exochelins. Proc Natl Acad Sci USA 92(11):5189-193. doi:10.-073/?pnas.-2.-1.-189 View Article PubMed Central PubMed
    Grunewald J, Marahiel M (2006) Chemoenzymatic and template-directed synthesis of bioactive macrocyclic peptides. Microbiol Mol Biol Rev 70(1):121-46. doi:10.-128/?MMBR.-0.-.-21-146.-006
    Guillon L, El Mecherki M, Altenburger S, Graumann P, Schalk I (2012) High cellular organization of pyoverdine biosynthesis in Pseudomonas aeruginosa: clustering of PvdA at the old cell pole. Environ Microbiol 14(8):1982-994. doi:10.-111/?j.-462-2920.-012.-2741.?x View Article PubMed
    Hannauer M, Schafer M, Hoegy F, Gizzi P, Wehrung P, Mislin G, Budzikiewicz H, Schalk I (2012) Biosynthesis of the pyoverdine siderophore of Pseudomonas aeruginosa involves precursors with a myristic or a myristoleic acid chain. FEBS Lett 586(1):96-01. doi:10.-016/?j.?febslet.-011.-2.-04 View Article PubMed
    Homann V, Sandy M, Tincu J, Templeton A, Tebo B, Butler A (2009) Loihichelins A–F, a suite of amphiphilic siderophores produced by the marine bacterium Halomonas LOB-5. J Nat Prod 72(5):884-88. doi:10.-021/?np800640h View Article PubMed Central PubMed
    Huang J, Han J, Zhang L, Leadbetter J (2003) Utilization of acyl-homoserine lactone quorum signal
  • 作者单位:Michelle P. Kem (1)
    Alison Butler (1)

    1. Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106-9510, USA
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Biochemistry
    Physical Chemistry
  • 出版者:Springer Netherlands
  • ISSN:1572-8773
文摘
Acyl peptidic siderophores are produced by a variety of bacteria and possess unique amphiphilic properties. Amphiphilic siderophores are generally produced in a suite where the iron(III)-binding headgroup remains constant while the fatty acid appendage varies by length and functionality. Acyl peptidic siderophores are commonly synthesized by non-ribosomal peptide synthetases; however, the method of peptide acylation during biosynthesis can vary between siderophores. Following biosynthesis, acyl siderophores can be further modified enzymatically to produce a more hydrophilic compound, which retains its ferric chelating abilities as demonstrated by pyoverdine from Pseudomonas aeruginosa and the marinobactins from certain Marinobacter species. Siderophore hydrophobicity can also be altered through photolysis of the ferric complex of certain β-hydroxyaspartic acid-containing acyl peptidic siderophores.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700