Recent advances in gold-metal oxide core-shell nanoparticles: Synthesis, characterization, and their application for heterogeneous catalysis
详细信息    查看全文
  • 作者:Michelle Lukosi ; Huiyuan Zhu ; Sheng Dai
  • 刊名:Frontiers of Chemical Science and Engineering
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:10
  • 期:1
  • 页码:39-56
  • 全文大小:1,799 KB
  • 参考文献:1.Kummer J. Catalysts for automobile emission control. Progress in Energy and Combustion Science, 1980, 6(2): 177–199CrossRef
    2.Gandhi H, Graham G, McCabe R W. Automotive exhaust catalysis. Journal of Catalysis, 2003, 216(1): 433–442CrossRef
    3.Twigg M V. Roles of catalytic oxidation in control of vehicle exhaust emissions. Catalysis Today, 2006, 117(4): 407–418CrossRef
    4.Kummer J. Use of noble metals in automobile exhaust catalysts. Journal of Physical Chemistry, 1986, 90(20): 4747–4752CrossRef
    5.Shelef M, McCabe R W. Twenty-five years after introduction of automotive catalysts: What next? Catalysis Today, 2000, 62(1): 35–50CrossRef
    6.Jacobsen C J, Madsen C, Houzvicka J, Schmidt I, Carlsson A. Mesoporous zeolite single crystals. Journal of the American Chemical Society, 2000, 122(29): 7116–7117CrossRef
    7.Corma A, Diaz-Cabanas M J, Martínez-Triguero J, Rey F, Rius J. A large-cavity zeolite with wide pore windows and potential as an oil refining catalyst. Nature, 2002, 418(6897): 514–517CrossRef
    8.Cabri W. Catalysis: The pharmaceutical perspective. Catalysis Today, 2009, 140(1): 2–10CrossRef
    9.An T, Yang H, Song W, Li G, Luo H, Cooper W J. Mechanistic considerations for the advanced oxidation treatment of fluoroquinolone pharmaceutical compounds using TiO2 heterogeneous catalysis. Journal of Physical Chemistry A, 2010, 114(7): 2569–2575CrossRef
    10.Janardhanan V M, Deutschmann O. CFD analysis of a solid oxide fuel cell with internal reforming: Coupled interactions of transport, heterogeneous catalysis and electrochemical processes. Journal of Power Sources, 2006, 162(2): 1192–1202CrossRef
    11.Park S, Gorte R J, Vohs J M. Applications of heterogeneous catalysis in the direct oxidation of hydrocarbons in a solid-oxide fuel cell. Applied Catalysis A, General, 2000, 200(1): 55–61CrossRef
    12.Li W, Liang C, Zhou W, Qiu J, Zhou Z, Sun G, Xin Q. Preparation and characterization of multiwalled carbon nanotube-supported platinum for cathode catalysts of direct methanol fuel cells. Journal of Physical Chemistry B, 2003, 107(26): 6292–6299CrossRef
    13.Bond G C. The effect of the metal to non-metal transition on the activity of gold catalysts. Faraday Discussions, 2011, 152: 277–291CrossRef
    14.Haruta M. When gold is not noble: Catalysis by nanoparticles. Chemical Record (New York, N.Y.), 2003, 3(2): 75–87
    15.Bond G C. The origins of particle size effects in heterogeneous catalysis. Surface Science, 1985, 156: 966–981CrossRef
    16.Alivisatos A P. Semiconductor clusters, nanocrystals, and quantum dots. Science, 1996, 271(5251): 933–937CrossRef
    17.Zhang Q, Lee I, Joo J B, Zaera F, Yin Y. Core-shell nanostructured catalysts. Accounts of Chemical Research, 2012, 46(8): 1816–1824CrossRef
    18.Bartholomew C H. Mechanisms of catalyst deactivation. Applied Catalysis A, General, 2001, 212(1): 17–60CrossRef
    19.Tripathy S K, Mishra A, Jha S K, Wahab R, Al-Khedhairy A A. Synthesis of thermally stable monodispersed Au@ SnO2 core-shell structure nanoparticles by a sonochemical technique for detection and degradation of acetaldehyde. Analytical Methods, 2013, 5(6): 1456–1462CrossRef
    20.Chen Y, Zhu B, Yao M, Wang S, Zhang S. The preparation and characterization of Au@TiO2 nanoparticles and their catalytic activity for CO oxidation. Catalysis Communications, 2010, 11(12): 1003–1007CrossRef
    21.Wu X F, Chen Y F, Yoon J M, Yu Y T. Fabrication and properties of flower-shaped Pt@TiO2 core-shell nanoparticles. Materials Letters, 2010, 64(20): 2208–2210CrossRef
    22.Haruta M. Catalysis of gold nanoparticles deposited on metal oxides. CATTech, 2002, 6(3): 102–115CrossRef
    23.Haruta M. Chance and necessity: My encounter with gold catalysts. Angewandte Chemie International Edition, 2014, 53(1): 52–56CrossRef
    24.Valden M, Lai X, Goodman D W. Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Science, 1998, 281(5383): 1647–1650CrossRef
    25.Haruta M, Kobayashi T, Sano H, Yamada N. Novel gold catalysts for the oxidation of carbon monoxide at a temperature far below 0 °C. Chemistry Letters, 1987, 16(2): 405–408CrossRef
    26.Haruta M, Yamada N, Kobayashi T, Iijima S. Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide. Journal of Catalysis, 1989, 115(2): 301–309CrossRef
    27.Zhang J, Tang Y, Lee K, Ouyang M. Tailoring light-matter-spin interactions in colloidal hetero-nanostructures. Nature, 2010, 466(7302): 91–95CrossRef
    28.Baker G A. Nanoparticles: From theory to application. Journal of the American Chemical Society, 2004, 126(47): 15632–15633CrossRef
    29.Natelson D. Nanostructures and Nanotechnology. Cambridge: Cambridge University Press, 2015CrossRef
    30.Aguirre M E, Rodríguez H B, San Román E, Feldhoff A, Grela M A. Ag@ZnO core-shell nanoparticles formed by the timely reduction of Ag+ ions and zinc acetate hydrolysis in N, Ndimethylformamide: Mechanism of growth and photocatalytic properties. Journal of Physical Chemistry C, 2011, 115(50): 24967–24974CrossRef
    31.Arroyo-Ramírez L, Chen C, Cargnello M, Murray C B, Fornasiero P, Gorte R J. Supported platinum-zinc oxide core-shell nanoparticle catalysts for methanol steam reforming. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2014, 2(45): 19509–19514CrossRef
    32.Zhang N, Liu S, Fu X, Xu Y J. Synthesis of M@TiO2 (M = Au, Pd, Pt) core-shell nanocomposites with tunable photoreactivity. Journal of Physical Chemistry C, 2011, 115(18): 9136–9145CrossRef
    33.An K, Zhang Q, Alayoglu S, Musselwhite N, Shin J Y, Somorjai G A. High-temperature catalytic reforming of n-hexane over supported and core-shell Pt nanoparticle catalysts: Role of oxidemetal interface and thermal stability. Nano Letters, 2014, 14(8): 4907–4912CrossRef
    34.Liu S, Xie M, Li Y, Guo X, Ji W, Ding W, Au C. Novel sea urchinlike hollow core-shell SnO2 superstructures: Facile synthesis and excellent ethanol sensing performance. Sensors and Actuators. B, Chemical, 2010, 151(1): 229–235CrossRef
    35.Phadungdhitidhada S, Thanasanvorakun S, Mangkorntong P, Choopun S, Mangkorntong N, Wongratanaphisan D. SnO2 nanowires mixed nanodendrites for high ethanol sensor response. Current Applied Physics, 2011, 11(6): 1368–1373CrossRef
    36.McAleer J F, Moseley P T, Norris J O, Williams D E. Tin dioxide gas sensors. Part 1. Aspects of the surface chemistry revealed by electrical conductance variations. Journal of the Chemical Society, Faraday Transactions 1. Physical Chemistry in Condensed Phases, 1987, 83(4): 1323–1346
    37.Yu K, Wu Z, Zhao Q, Li B, Xie Y. High-temperature-stable Au@SnO2 core/shell supported catalyst for CO oxidation. Journal of Physical Chemistry C, 2008, 112(7): 2244–2247CrossRef
    38.Galeano C, Güttel R, Paul M, Arnal P, Lu A H, Schüth F. Yolkshell gold nanoparticles as model materials for support—effect studies in heterogeneous catalysis: Au, @C and Au, @ZrO2 for CO oxidation as an example. Chemistry (Weinheim an der Bergstrasse, Germany), 2011, 17(30): 8434–8439
    39.Bakhmutsky K, Wieder N L, Cargnello M, Galloway B, Fornasiero P, Gorte R J. A Versatile route to core-shell catalysts: Synthesis of dispersible M@ Oxide (M = Pd, Pt; Oxide = TiO2, ZrO2) nanostructures by self–assembly. ChemSusChem, 2012, 5(1): 140–148CrossRef
    40.Manicone P F, Iommetti P R, Raffaelli L. An overview of zirconia ceramics: Basic properties and clinical applications. Journal of Dentistry, 2007, 35(11): 819–826CrossRef
    41.Wei Y, Zhao Z, Yu X, Jin B, Liu J, Xu C, Duan A, Jiang G, Ma S. One-pot synthesis of core-shell Au@ CeO2-d nanoparticles supported on three-dimensionally ordered macroporous ZrO2 with enhanced catalytic activity and stability for soot combustion. Catalysis Science & Technology, 2013, 3(11): 2958–2970CrossRef
    42.Kong L, Chen W, Ma D, Yang Y, Liu S, Huang S. Size control of Au@Cu2O octahedra for excellent photocatalytic performance. Journal of Materials Chemistry, 2012, 22(2): 719–724CrossRef
    43.Lin F H, Doong R. Bifunctional Au-Fe3O4 heterostructures for magnetically recyclable catalysis of nitrophenol reduction. Journal of Physical Chemistry C, 2011, 115(14): 6591–6598CrossRef
    44.Zhang H, Ji Z, Xia T, Meng H, Low-Kam C, Liu R, Pokhrel S, Lin S, Wang X, Liao Y P, Wang M, Li L, Rallo R, Damoiseaux R, Telesca D, Mädler L, Cohen Y, Zink J I, Nel A E. Use of metal oxide nanoparticle band gap to develop a predictive paradigm for oxidative stress and acute pulmonary inflammation. ACS Nano, 2012, 6(5): 4349–4368CrossRef
    45.Zhu H, Sigdel A, Zhang S, Su D, Xi Z, Li Q, Sun S. Core/shell Au/MnO nanoparticles prepared through controlled oxidation of AuMn as an electrocatalyst for sensitive H2O2 detection. Angewandte Chemie, 2014, 126(46): 12716–12720CrossRef
    46.Zhang T, Zhao H, He S, Liu K, Liu H, Yin Y, Gao C. Unconventional route to encapsulated ultrasmall gold nanoparticles for high-temperature catalysis. ACS Nano, 2014, 8(7): 7297–7304CrossRef
    47.Rubinstein M, Kodama R, Makhlouf S A. Electron spin resonance study of NiO antiferromagnetic nanoparticles. Journal of Magnetism and Magnetic Materials, 2001, 234(2): 289–293CrossRef
    48.Biju V, Khadar M A. DC conductivity of consolidated nanoparticles of NiO. Materials Research Bulletin, 2001, 36(1): 21–33CrossRef
    49.Wang Z, Bi H, Wang P, Wang M, Liu Z, Liu X. Magnetic and microwave absorption properties of self-assemblies composed of core-shell cobalt-cobalt oxide nanocrystals. Physical Chemistry Chemical Physics, 2015, 17(5): 3796–3801CrossRef
    50.Zhang J, Tang Y, Lee K, Ouyang M. Nonepitaxial growth of hybrid core-shell nanostructures with large lattice mismatches. Science, 2010, 327(5973): 1634–1638CrossRef
    51.Sun H, He J, Wang J, Zhang S Y, Liu C, Sritharan T, Mhaisalkar S, Han M Y, Wang D, Chen H. Investigating the multiple roles of polyvinylpyrrolidone for a general methodology of oxide encapsulation. Journal of the American Chemical Society, 2013, 135(24): 9099–9110CrossRef
    52.Zheleva T, Jagannadham K, Narayan J. Epitaxial growth in largelattice- mismatch systems. Journal of Applied Physics, 1994, 75(2): 860–871CrossRef
    53.Chen Y, Washburn J. Structural transition in large-lattice-mismatch heteroepitaxy. Physical Review Letters, 1996, 77(19): 4046–4049CrossRef
    54.Kukta R, Freund L. Minimum energy configuration of epitaxial material clusters on a lattice-mismatched substrate. Journal of the Mechanics and Physics of Solids, 1997, 45(11): 1835–1860CrossRef
    55.Qi J, Chen J, Li G, Li S, Gao Y, Tang Z. Facile synthesis of coreshell Au@CeO2 nanocomposites with remarkably enhanced catalytic activity for CO oxidation. Energy & Environmental Science, 2012, 5(10): 8937–8941CrossRef
    56.Liu D Y, Ding S Y, Lin H X, Liu B J, Ye Z Z, Fan F R, Ren B, Tian Z Q. Distinctive enhanced and tunable plasmon resonant absorption from controllable Au@Cu2O nanoparticles: Experimental and theoretical modeling. Journal of Physical Chemistry C, 2012, 116(7): 4477–4483CrossRef
    57.Meir N, Jen-La P I, Flomin K, Chockler E, Moshofsky B, Diab M, Volokh M, Mokari T. Studying the chemical, optical and catalytic properties of noble metal (Pt, Pd, Ag, Au)-Cu2O core-shell nanostructures grown via a general approach. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2013, 1(5): 1763–1769CrossRef
    58.Wang W C, Lyu L M, Huang M H. Investigation of the effects of polyhedral gold nanocrystal morphology and facets on the formation of Au-Cu2O core-shell heterostructures. Chemistry of Materials, 2011, 23(10): 2677–2684CrossRef
    59.Zhang L, Blom D A, Wang H. Au-Cu2O core-shell nanoparticles: A hybrid metal-semiconductor heteronanostructure with geometrically tunable optical properties. Chemistry of Materials, 2011, 23(20): 4587–4598CrossRef
    60.Yin H, Ma Z, Chi M, Dai S. Heterostructured catalysts prepared by dispersing Au@Fe2O3 core-shell structures on supports and their performance in CO oxidation. Catalysis Today, 2011, 160(1): 87–95CrossRef
    61.Zhuang Z, Sheng W, Yan Y. Synthesis of monodispere Au@Co3O4 core-shell nanocrystals and their enhanced catalytic activity for oxygen evolution reaction. Advanced Materials, 2014, 26(23): 3950–3955CrossRef
    62.Lin M, Wang Y, Sun X, Wang W, Chen L. “Elastic” property of mesoporous silica shell: For dynamic surface enhanced Raman scattering ability monitoring of growing noble metal nanostructures via a simplified spatially confined growth method. ACS Applied Materials & Interfaces, 2015, 7(14): 7516–7525CrossRef
    63.Chung F C, Wu R J, Cheng F C. Fabrication of a Au@SnO2 coreshell structure for gaseous formaldehyde sensing at room temperature. Sensors and Actuators. B, Chemical, 2014, 190: 1–7CrossRef
    64.Wu R J, Lin D J, Yu M R, Chen M H, Lai H F. Ag@SnO2 coreshell material for use in fast-response ethanol sensor at room operating temperature. Sensors and Actuators. B, Chemical, 2013, 178: 185–191CrossRef
    65.Goebl J, Joo J B, Dahl M, Yin Y. Synthesis of tailored Au@TiO2 core-shell nanoparticles for photocatalytic reforming of ethanol. Catalysis Today, 2014, 225: 90–95CrossRef
    66.Fang C, Jia H, Chang S, Ruan Q, Wang P, Chen T, Wang J. (Gold core)/(titania shell) nanostructures for plasmon-enhanced photon harvesting and generation of reactive oxygen species. Energy & Environmental Science, 2014, 7(10): 3431–3438CrossRef
    67.Bond G C. Gold: A relatively new catalyst. Catalysis Today, 2002, 72(1): 5–9CrossRef
    68.Ge J, Zhang Q, Zhang T, Yin Y. Core-satellite nanocomposite catalysts protected by a porous silica shell: Controllable reactivity, high stability, and magnetic recyclability. Angewandte Chemie, 2008, 120(46): 9056–9060CrossRef
    69.Poovarodom S, Bass J D, Hwang S J, Katz A. Investigation of the core-shell interface in gold@silica nanoparticles: A silica imprinting approach. Langmuir, 2005, 21(26): 12348–12356CrossRef
    70.Liz-Marzán L M, Giersig M, Mulvaney P. Synthesis of nanosized gold-silica core-shell particles. Langmuir, 1996, 12(18): 4329–4335CrossRef
    71.Zhang J, Li L, Huang X, Li G. Fabrication of Ag-CeO2 core-shell nanospheres with enhanced catalytic performance due to strengthening of the interfacial interactions. Journal of Materials Chemistry, 2012, 22(21): 10480–10487CrossRef
    72.Zhang N, Xu Y J. Aggregation-and leaching-resistant, reusable, and multifunctional Pd@CeO2 as a robust nanocatalyst achieved by a hollow core-shell strategy. Chemistry of Materials, 2013, 25(9): 1979–1988CrossRef
    73.Tsuji M, Matsuo R, Jiang P, Miyamae N, Ueyama D, Nishio M, Hikino S, Kumagae H, Kamarudin K S N, Tang X L. Shapedependent evolution of Au@Ag core-shell nanocrystals by PVPassisted N, N-dimethylformamide reduction. Crystal Growth & Design, 2008, 8(7): 2528–2536CrossRef
    74.Arnal PM, Comotti M, Schüth F. High temperature stable catalysts by hollow sphere encapsulation. Angewandte Chemie, 2006, 118(48): 8404–8407CrossRef
    75.Qu Y, Liu F, Wei Y, Gu C, Zhang L, Liu Y. Forming ceria shell on Au-core by LSPR photothermal induced interface reaction. Applied Surface Science, 2015, 343: 207–211CrossRef
    76.Li B, Gu T, Ming T, Wang J, Wang P, Wang J, Yu J C. (Gold core) @(ceria shell) nanostructures for plasmon-enhanced catalytic reactions under visible light. ACS Nano, 2014, 8(8): 8152–8162CrossRef
    77.Zhu Z, Chang J L, Wu R J. Fast ozone detection by using a coreshell Au@TiO2 sensor at room temperature. Sensors and Actuators. B, Chemical, 2015, 214: 56–62CrossRef
    78.Mitsudome T, Yamamoto M, Maeno Z, Mizugaki T, Jitsukawa K, Kaneda K. One-step synthesis of core-gold/shell-ceria nanomaterial and its catalysis for highly selective semihydrogenation of alkynes. Journal of the American Chemical Society, 2015, 137(42): 13452–13455CrossRef
    79.Han L, Zhu C, Hu P, Dong S. One-pot synthesis of a Au@TiO2 core-shell nanocomposite and its catalytic property. RSC Advances, 2013, 3(31): 12568–12570CrossRef
    80.Han L, Wei H, Tu B, Zhao D. A facile one-pot synthesis of uniform core-shell silver nanoparticle@ mesoporous silica nanospheres. Chemical Communications, 2011, 47(30): 8536–8538CrossRef
    81.Jiang W, Zhou Y, Zhang Y, Xuan S, Gong X. Superparamagnetic Ag@Fe3O4 core-shell nanospheres: Fabrication, characterization and application as reusable nanocatalysts. Dalton Transactions (Cambridge, England), 2012, 41(15): 4594–4601CrossRef
    82.Chen L, Chang B K, Lu Y, Yang W, Tatarchuk B J. Selective catalytic oxidation of CO for fuel cell application. Fuel Chemistry Division Preprints, 2002, 47(2): 609–610
    83.Hutchings G J, Haruta M. A golden age of catalysis: A perspective. Applied Catalysis A, General, 2005, 291(1): 2–5CrossRef
    84.Kandoi S, Gokhale A, Grabow L, Dumesic J, Mavrikakis M. Why Au and Cu are more selective than Pt for preferential oxidation of CO at low temperature. Catalysis Letters, 2004, 93(1-2): 93–100CrossRef
    85.Güttel R, Paul M, Galeano C, Schüth F. Au @ZrO2 yolk-shell catalysts for CO oxidation: Study of particle size effect by ex-post size control of Au cores. Journal of Catalysis, 2012, 289: 100–104CrossRef
    86.Bauer J C, Toops T J, Oyola Y, Parks J E, II, Dai S, Overbury S H. Catalytic activity and thermal stability of Au-CuO/SiO2 catalysts for the low temperature oxidation of CO in the presence of propylene and NO. Catalysis Today, 2014, 231: 15–21CrossRef
    87.Pachfule P, Kandambeth S, Díaz D D, Banerjee R. Highly stable covalent organic framework—Au nanoparticles hybrids for enhanced activity for nitrophenol reduction. Chemical Communications, 2014, 50(24): 3169–3172CrossRef
    88.Du Y, Chen H, Chen R, Xu N. Synthesis of p-aminophenol from pnitrophenol over nano-sized nickel catalysts. Applied Catalysis A, General, 2004, 277(1): 259–264CrossRef
    89.Woo H, Park K H. Hybrid Au nanoparticles on Fe3O4@polymer as efficient catalyst for reduction of 4-nitrophenol. Catalysis Communications, 2014, 46: 133–137CrossRef
    90.Kang H, Kim M, Park K H. Effective immobilization of gold nanoparticles on core-shell thiol-functionalized GO coated TiO2 and their catalytic application in the reduction of 4-nitrophenol. Applied Catalysis A, General, 2015, 502: 239–245CrossRef
    91.Robinson I, Tung L D, Maenosono S, Wälti C, Thanh N T. Synthesis of core-shell gold coated magnetic nanoparticles and their interaction with thiolated DNA. Nanoscale, 2010, 2(12): 2624–2630CrossRef
    92.Chang Y C, Chen D H. Catalytic reduction of 4-nitrophenol by magnetically recoverable Au nanocatalyst. Journal of Hazardous Materials, 2009, 165(1): 664–669CrossRef
    93.Gupta V K, Atar N, Yola M L, Üstündag Z, Uzun L. A novel magnetic Fe@Au core-shell nanoparticles anchored graphene oxide recyclable nanocatalyst for the reduction of nitrophenol compounds. Water Research, 2014, 48: 210–217CrossRef
    94.Fan C M, Zhang L F, Wang S S, Wang D H, Lu L Q, Xu A W. Novel CeO2 yolk-shell structures loaded with tiny Au nanoparticles for superior catalytic reduction of p-nitrophenol. Nanoscale, 2012, 4(21): 6835–6840CrossRef
    95.Evangelista V, Acosta B, Miridonov S, Smolentseva E, Fuentes S, Simakov A. Highly active Au-CeO2@ZrO2 yolk-shell nanoreactors for the reduction of 4-nitrophenol to 4-aminophenol. Applied Catalysis B: Environmental, 2015, 166: 518–528CrossRef
    96.He B, Zhao Q, Zeng Z, Wang X, Han S. Effect of hydrothermal reaction time and calcination temperature on properties of Au@CeO2 core-shell catalyst for CO oxidation at low temperature. Journal of Materials Science, 2015, 50(19): 6339–6348CrossRef
    97.Ke F, Zhu J, Qiu L G, Jiang X. Controlled synthesis of novel Au@MIL-100 (Fe) core-shell nanoparticles with enhanced catalytic performance. Chemical Communications, 2013, 49(13): 1267–1269CrossRef
    98.Wang S, Zhang M, Zhang W. Yolk-shell catalyst of single Au nanoparticle encapsulated within hollow mesoporous silica microspheres. ACS Catalysis, 2011, 1(3): 207–211CrossRef
    99.Mitsudome T, Mikami Y, Matoba M, Mizugaki T, Jitsukawa K, Kaneda K. Design of a silver-cerium dioxide core-shell nanocomposite catalyst for chemoselective reduction reactions. Angewandte Chemie International Edition, 2012, 51(1): 136–139CrossRef
    100.Wunder S, Lu Y, Albrecht M, Ballauff M. Catalytic activity of faceted gold nanoparticles studied by a model reaction: Evidence for substrate-induced surface restructuring. ACS Catalysis, 2011, 1(8): 908–916CrossRef
    101.Hsu S C, Liu S Y, Wang H J, Huang M H. Facet dependent surface plasmon resonance properties of Au-Cu2O core-shell nanocubes, octahedra, and rhombic dodecahedra. Small, 2015, 11(2): 195–201CrossRef
    102.Rashid M, Mandal T K. Templateless synthesis of polygonal gold nanoparticles: An unsupported and reusable catalyst with superior activity. Advanced Functional Materials, 2008, 18(15): 2261–2271CrossRef
    103.Shi X, Ji Y, Hou S, Liu W, Zhang H, Wen T, Yan J, Song M, Hu Z, Wu X. Plasmon enhancement effect in Au gold nanorods@Cu2O core-shell nanostructures and their use in probing defect states. Langmuir, 2015, 31(4): 1537–1546CrossRef
  • 作者单位:Michelle Lukosi (1)
    Huiyuan Zhu (2)
    Sheng Dai (1) (2)

    1. Department of Chemistry, University of Tennessee, Knoxville, TN, 37916, USA
    2. Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Chinese Library of Science
    Industrial Chemistry and Chemical Engineering
  • 出版者:Higher Education Press, co-published with Springer-Verlag GmbH
  • ISSN:2095-0187
文摘
Heterogeneous catalysis with core-shell structures has been a large area of focus for many years. This paper reviews the most recent work and research in coreshell catalysts utilizing noble metals, specifically gold, as the core within a metal oxide shell. The advantage of the core-shell structure lies in its capacity to retain catalytic activity under thermal and mechanical stress, which is a pivotal consideration when synthesizing any catalyst. This framework is particularly useful for gold nanoparticles in protecting them from sintering so that they retain their size, structure, and most importantly their catalytic efficiency. The different methods of synthesizing such a structure have been compiled into three categories: seed-mediated growth, post selective oxidation treatment, and one-pot chemical synthesis. The selective oxidation of carbon monoxide and reduction of nitrogen containing compounds, such as nitrophenol and nitrostyrene, have been studied over the past few years to evaluate the functionality and stability of the core-shell catalysts. Different factors that could influence the catalyst’s performance are the size, structure, choice of metal oxide shell and noble metal core and thereby the interfacial synergy and lattice mismatch between the core and shell. In addition, the morphology of the shell also plays a critical role, including its porosity, density, and thickness. This review covers the synthesis and characterization of gold-metal oxide core-shell structures, as well as how they are utilized as catalysts for carbon monoxide (CO) oxidation and selective reduction of nitrogen-containing compounds.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700