A generalized Drucker–Prager viscoplastic yield surface model for asphalt concrete
详细信息    查看全文
  • 作者:Yuqing Zhang ; Michelle Bernhardt ; Giovanna Biscontin ; Rong Luo…
  • 关键词:Asphalt concrete ; Rutting ; Viscoplasticity ; Yield surface ; Drucker–Prager ; Anisotropy ; Convexity
  • 刊名:Materials and Structures
  • 出版年:2015
  • 出版时间:November 2015
  • 年:2015
  • 卷:48
  • 期:11
  • 页码:3585-3601
  • 全文大小:2,308 KB
  • 参考文献:1.Argyris JH, Faust G, Szimmat J, Warnke EP, Willam KJ (1974) Recent developments in the finite element analysis of prestressed concrete reactor vessels. Nucl Eng Des 28:42–75. doi:10.​1016/​0029-5493(74)90088-0 CrossRef
    2.Bahuguna S, Panoskaltsis VP, Papoulia KD (2006) Identification and modeling of permanent deformations of asphalt concrete. J Eng Mech 132:231–239. doi:10.​1061/​(asce)0733-9399(2006)132:​3(231 CrossRef
    3.Bardet JP (1990) Lode dependences for isotropic pressure-sensitive elastoplastic materials. J Appl Mech 57:498–506CrossRef
    4.Bigoni D, Piccolroaz A (2004) Yield criteria for quasibrittle and frictional materials. Int J Solids Struct 41:2855–2878. doi:10.​1016/​j.​ijsolstr.​2003.​12.​024 MATH MathSciNet CrossRef
    5.Birgisson B, Soranakom C, Napier J, Roque R (2003) Simulation of fracture initiation in hot-mix asphalt mixtures. Transp Res Rec J Transp Res Board 1849:183–190. doi:10.​3141/​1849-20
    6.Bonaquist R, Witczak M (1996) Plasticity modeling applied to the permanent deformation response of granular materials in flexible pavement systems. Transp Res Rec J Transp Res Board 1540:7–14. doi:10.​3141/​1540-02
    7.Chen WF, Mizuno E (1990) Nonlinear analysis in soil mechanics, theory and implementation. Elsevier Science Ltd., Amsterdam
    8.Darabi MK, Al-Rub RKA, Masad EA, Huang C-W, Little DN (2011) A thermo-viscoelastic-viscoplastic-viscodamage constitutive model for asphaltic materials. Int J Solids Struct 48:191–207. doi:10.​1016/​j.​ijsolstr.​2010.​09.​019 MATH CrossRef
    9.Darabi MK, Al-Rub RKA, Masad EA, Huang C-W, Little DN (2012a) A modified viscoplastic model to predict the permanent deformation of asphaltic materials under cyclic-compression loading at high temperatures. Int J Plast 35:100–134. doi: http://​dx.​doi.​org/​10.​1016/​j.​ijplas.​2012.​03.​001
    10.Darabi MK, Al-Rub RKA, Masad EA, Little DN (2012b) A thermodynamic framework for constitutive modeling of time- and rate-dependent materials. Part ii: numerical aspects and application to asphalt concrete. Int J Plast 35:67–99. doi: http://​dx.​doi.​org/​10.​1016/​j.​ijplas.​2012.​02.​003
    11.Desai CS, Somasundaram S, Frantziskonis G (1986) A hierarchical approach for constitutive modelling of geologic materials. Int J Numer Anal Meth Geomech 10:225–257MATH CrossRef
    12.Dessouky SH, Masad EA (2006) The development of a microstructural-based continuum model for hot mix asphalt. In: Lytton RL (ed) Asphalt concrete: simulation, modeling, and experimental characterization. Geotechnical special publication. American Society of Civil Engineers, Baton Rouge, pp 44–52
    13.Drucker DC (1959) A definition of stable inelastic material. J Appl Mech 26:101–106MATH MathSciNet
    14.Fwa TF, Tan SA, Low BH (1997) Relating triaxial test properties of asphalt mixtures to mix parameters determined by marshall stability test. J Test Eval 25:471–478CrossRef
    15.Fwa TF, Tan SA, Zhu LY (2004) Rutting prediction of asphalt pavement layer using c-phi model. J Transp Eng 130:675–683. doi:10.​1061/​(asce)0733-947x(2004)130:​5(675) CrossRef
    16.Gao Z, Zhao J, Yao Y (2010) A generalized anisotropic failure criterion for geomaterials. Int J Solid Struct 47:3166–3185. doi: http://​dx.​doi.​org/​10.​1016/​j.​ijsolstr.​2010.​07.​016
    17.Haythornthwaite RM (1985) A family of smooth yield surfaces. Mech Res Commun 12:87–91MATH CrossRef
    18.Huang B, Mohammad L, Wathugala G (2004) Application of a temperature dependent viscoplastic hierarchical single surface model for asphalt mixtures. J Mater Civ Eng 16:147–154CrossRef
    19.Jiang J, Pietruszczak S (1988) Convexity of yield loci for pressure sensitive materials. Comput Geotech 5:51–63CrossRef
    20.Kong Y, Zhao J, Yao Y (2013) A failure criterion for cross-anisotropic soils considering microstructure. Acta Geotech 8:665–673. doi:10.​1007/​s11440-012-0202-7 CrossRef
    21.Lin F-B, Bazant ZP (1986) Convexity of smooth yield surface of frictional material. J Eng Mech 112:1259–1262CrossRef
    22.Maiolino S (2005) Proposition of a general yield function in geomechanics. CR Mec 333:279–284MATH CrossRef
    23.Maiolino S, Luong MP (2009) Measuring discrepancies between coulomb and other geotechnical criteria: Drucker–Prager and Matsuoka–Nakai. Paper presented at the 7th Euromech solid mechanics conference, Lisbon, Portugal 2009-09-07
    24.Masad E, Dessouky S, Little D (2007) Development of an elastoviscoplastic microstructural-based continuum model to predict permanent deformation in hot mix asphalt. Int J Geomech 7:119–130CrossRef
    25.Masad E, Muhunthan B, Shashidhar N, Harman T (1998) Aggregate orientation and segregation in asphalt concrete. In: Papagiannakis AT, Schwartz CW (eds) Application of geotechnical principles in pavement engineering. American Society of Civil Engineers, Boston, pp 69–80 (geotechnical special publication)
    26.Matsuoka H, Nakai T (1974) Stress-deformation and strength characteristics of soil under three different principal stresses. Proc Japan Soc Civil Eng 232:59–70
    27.Matsuoka H, Nakai T (1985) Relationship among Tresca, Mises, Mohr–Coulomb and Matsuoka-Nakai failure criteria. Soils Found 25:123–128CrossRef
    28.Mortara G (2008) A new yield and failure criterion for geomaterials. Geotechnique 58:125–132CrossRef
    29.Mortara G (2010) A yield criterion for isotropic and cross-anisotropic cohesive–frictional materials. Int J Numer Anal Meth Geomech 34:953–977. doi:10.​1002/​nag.​846 MATH
    30.Muraya PM, Molenaar AAA, van de Ven MFC (2009) Contribution of asphalt mix components to permanent deformation resistance. In: Tutumluer E, AlQadi IL (eds) 8th international conference on the bearing capacity of roads, railways and airfields, Champaign, IL, 2009, pp 259–268
    31.Oda M (1993) Inherent and induced anisotropy in plasticity theory of granular soils. Mech Mater 16:35–45MathSciNet CrossRef
    32.Oda M, Nakayama H (1989) Yield function for soil with anisotropic fabric. J Eng Mech 115:89–104CrossRef
    33.Oh J, Lytton RL, Fernando EG (2006) Modeling of pavement response using nonlinear cross-anisotropy approach. J Trans Eng 132:458–468CrossRef
    34.Park D, Martin A, Lee H, Masad E (2005) Characterization of permanent deformation of an asphalt mixture using a mechanistic approach. KSCE J Civil Eng 9:213–218. doi:10.​1007/​bf02829052 CrossRef
    35.Pickering DJ (1970) Anisotropic elastic parameters for soil. Geotechnique 20:271–276CrossRef
    36.Rutherford CJ (2012) Development of a multi-directional direct simple shear testing device for characterization of the cyclic shear response of marine clays. Ph.D. dissertation. Texas A&M University, College Station, Texas, USA
    37.Rutherford CJ, Biscontin G (2013) Development of a multi-directional simple shear testing device. Geotech Test J. doi: 10.​1520/​GTJ20120173
    38.Saadeh S, Masad E, Little D (2007) Characterization of asphalt mix response under repeated loading using anisotropic nonlinear viscoelastic–viscoplastic model. J Mater Civ Eng 19:912–924CrossRef
    39.Seibi A, Sharma M, Ali G, Kenis W (2001) Constitutive relations for asphalt concrete under high rates of loading. Transp Res Rec J Transp Res Board 1767:111–119. doi:10.​3141/​1767-14
    40.Shaverdi H, Taha MR, Kalantary F (2013) Micromechanical formulation of the yield surface in the plasticity of granular materials. J Appl Math 2013:7. doi:10.​1155/​2013/​385278 CrossRef
    41.Somasundaram S, Desai C (1988) Modeling and testing for anisotropic behavior of soils. J Eng Mech 114:1473–1496. doi:10.​1061/​(ASCE)0733-9399(1988)114:​9(1473 CrossRef
    42.Sousa JB, Weissman SL (1994) Modeling permanent deformation of asphalt-aggregate mixes. J Assoc Asphalt Pav Technol 63:224–257
    43.Subramanian V, Guddati MN, Richard Kim Y (2013) A viscoplastic model for rate-dependent hardening for asphalt concrete in compression. Mech Mater 59:142–159. doi: http://​dx.​doi.​org/​10.​1016/​j.​mechmat.​2012.​10.​003
    44.Sun L, Zhu H, Zhu Y (2013) Two-stage viscoelastic–viscoplastic damage constitutive model of asphalt mixtures. J Mater Civ Eng 25:958–971. doi:10.​1061/​(ASCE)MT.​1943-5533.​0000646 CrossRef
    45.Tan S-A, Low B-H, Fwa T-F (1994) Behavior of asphalt concrete mixtures in triaxial compression. J Test Eval 22:195–203CrossRef
    46.Tashman L, Masad E, Peterson B, Saleh H (2002) Internal structure analysis of asphalt mixes to improve the simulation of superpave gyratory compaction to field conditions. J Assoc Asphalt Pav Technol 70:605–645
    47.Tashman L, Masad E, Zbib H, Little D, Kaloush K (2004) Anisotropic viscoplastic continuum damage model for asphalt mixes. In: Recent advances in materials characterization and modeling of pavement systems. 15th engineering mechanics division conference, New York, NY, 2004. American Society of Civil Engineers, New York, pp 111–125
    48.Tobita Y (1989) Fabric tensors in constitutive equations for granular materials. Soils Found 29:91–104CrossRef
    49.Tobita Y, Yanagisawa E (1988) Contact tensor in constitutive model for granular materials. In: Satake M, Jenkins JT (eds) Micromechanics of granular materials. Elsevier Science, Amsterdam, pp 263–270
    50.Tobita Y, Yanagisawa E (1992) Modified stress tensors for anisotropic behavior of granular materials. Soils Found 32:85–99CrossRef
    51.TxDOT (2004) Standard specifications for construction and maintenance of highways, streets, and bridges. Texas Department of Transportation, Austin, TX
    52.TxDOT (2008) Test procedure for design of bituminous mixtures. Texas Department of Transportation, Austin, TX
    53.van Eekelen HAM (1980) Isotropic yield surfaces in three dimensions for use in soil mechanics. Int J Numer Anal Meth Geomech 4:89–101. doi:10.​1002/​nag.​1610040107 MATH CrossRef
    54.Wang L, Hoyos LR, Wang J, Voyiadjis G, Abadie C (2005) Anisotropic properties of asphalt concrete: characterization and implications for pavement design and analysis. J Mater Civ Eng 17:535–543CrossRef
    55.Wathugala G, Desai C (1993) Constitutive model for cyclic behavior of clays. I: theory. J Geotech Eng 119:714–729. doi:10.​1061/​(ASCE)0733-9410(1993)119:​4(714) CrossRef
    56.Weissman SL, Harvey J, Sackman JL, Long F (1999) Selection of laboratory test specimen dimension for permanent deformation of asphalt concrete pavements. Transp Res Rec J Transp Res Board 1681:113–120. doi:10.​3141/​1681-14
    57.Yang ZX, Lit XS, Yang J (2008) Quantifying and modeling fabric anisotropy of granular soils. Geotechnique 58:237–248CrossRef
    58.Zhang Y, Luo R, Lytton RL (2011) Microstructure-based inherent anisotropy of asphalt mixtures. J Mater Civ Eng 23:1473–1482CrossRef
    59.Zhang Y, Luo R, Lytton RL (2012) Anisotropic viscoelastic properties of undamaged asphalt mixtures. J Trans Eng 138:75–89CrossRef
    60.Zhang Y, Luo R, Lytton RL (2013) Characterization of viscoplastic yielding of asphalt concrete. Construct Build Mater 47:671–679. doi: http://​dx.​doi.​org/​10.​1016/​j.​conbuildmat.​2013.​05.​075
    61.Zhu H, Sun L (2013) A viscoelastic–viscoplastic damage constitutive model for asphalt mixtures based on thermodynamics. International J Plast 40:81–100. doi: http://​dx.​doi.​org/​10.​1016/​j.​ijplas.​2012.​07.​005
  • 作者单位:Yuqing Zhang (1)
    Michelle Bernhardt (2)
    Giovanna Biscontin (3)
    Rong Luo (1)
    Robert L. Lytton (1)

    1. Texas A&M Transportation Institute, CE/TTI Bldg 508E, 3135 TAMU, College Station, Texas, 77843-3135, USA
    2. Department of Civil Engineering, University of Arkansas, 4190 Bell Engineering Center, Fayetteville, AR, 72701, USA
    3. Department of Engineering, Cambridge University, Schofield Centre, High Cross, Madingley Road, Cambridge, CB3 0EL, UK
  • 刊物类别:Engineering
  • 刊物主题:Structural Mechanics
    Theoretical and Applied Mechanics
    Mechanical Engineering
    Operating Procedures and Materials Treatment
    Civil Engineering
    Building Materials
  • 出版者:Springer Netherlands
  • ISSN:1871-6873
文摘
A generalized Drucker–Prager (GD–P) viscoplastic yield surface model was developed and validated for asphalt concrete. The GD–P model was formulated based on fabric tensor modified stresses to consider the material inherent anisotropy. A smooth and convex octahedral yield surface function was developed in the GD–P model to characterize the full range of the internal friction angles from 0° to 90°. In contrast, the existing Extended Drucker–Prager (ED–P) was demonstrated to be applicable only for a material that has an internal friction angle less than 22°. Laboratory tests were performed to evaluate the anisotropic effect and to validate the GD–P model. Results indicated that (1) the yield stresses of an isotropic yield surface model are greater in compression and less in extension than that of an anisotropic model, which can result in an under-prediction of the viscoplastic deformation; and (2) the yield stresses predicted by the GD–P model matched well with the experimental results of the octahedral shear strength tests at different normal and confining stresses. By contrast, the ED–P model over-predicted the octahedral yield stresses, which can lead to an under-prediction of the permanent deformation. In summary, the rutting depth of an asphalt pavement would be underestimated without considering anisotropy and convexity of the yield surface for asphalt concrete. The proposed GD–P model was demonstrated to be capable of overcoming these limitations of the existing yield surface models for the asphalt concrete.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700