DEM investigations of two-dimensional granular vortex- and anti-vortex-structures during plane strain compression
详细信息    查看全文
  • 作者:J. Kozicki ; J. Tejchman
  • 关键词:Plane strain compression testa ; Granular material ; Discrete element method ; Vortex ; Anti ; vortex
  • 刊名:Granular Matter
  • 出版年:2016
  • 出版时间:May 2016
  • 年:2016
  • 卷:18
  • 期:2
  • 全文大小:19,350 KB
  • 参考文献:1.Utter, B., Behringer, R.P.: Self-diffusion in dense granular shear flows. Phys. Rev. E 69(3), 031308-1–031308-12 (2004)ADS CrossRef
    2.Abedi, S., Rechenmacher, A.L., Orlando, A.D.: Vortex formation and dissolution in sheared sands. Granul. Matter 14, 695–705 (2012)CrossRef
    3.Richefeu, V., Combe, G., Viggiani, G.: An experimental assessment of displacement fluctuations in a 2D granular material subjected to shear. Geotechn. Lett. 2, 113–118 (2012)CrossRef
    4.Miller, T., Rognon, P., Metzger, B., et al.: Eddy viscosity in dense granular flows. Phys. Rev. Lett. 111(5), 058002 (2013)ADS CrossRef
    5.Radjai, F., Roux, S.: Turbulent-like fluctuation in quasi-static flow of granular media. Phys. Rev. Lett. 89, 064302 (2002)ADS CrossRef
    6.Williams, J.R., Rege, N.: Coherent vortex structures in deforming granular materials. Mech. Cohes. Frict. Mater. 2, 223–236 (1997)CrossRef
    7.Kuhn, M.R.: Structured deformation in granular materials. Mech. Mater. 31, 407–442 (1999)CrossRef
    8.Alonso-Marroquin, F., Vardoulakis, I., Herrmann, H., Weatherley, D., Mora, P.: Effect of rolling on dissipation in fault gouges. Phys. Rev. E 74, 031306 (2006)ADS CrossRef
    9.Tordesillas, A., Muthuswamy, M., Walsh, S.D.C.: Mesoscale measures of nonaffine deformation in dense granular assemblies. J. Eng. Mech. 134(12), 1095–1113 (2008)CrossRef
    10.Tordesillas, A., Pucilowski, S., Walker, D.M., Peters, J.F., Walizer, L.E.: Micromechanics of vortices in granular media: connection to shear bands and implications for continuum modelling of failure in geomaterials. Int. J. Numer. Anal. Meth. Geomech. 38(12), 1247–1275 (2014)CrossRef
    11.Tordesillas, A., Pucilowski, S., Lin, Q, Peters, J.F., Behringer, R.P.: Granular vortices: identification, characterization and conditions for the localization of deformation. J. Mech. Phys. Solids (2016). doi:10.​1016/​j.​jmps.​2016.​02.​032
    12.Liu, X., Papon, A., Mühlhaus, H.B.: Numerical study of structural evolution in shear band. Philos. Mag. 92(28–30), 3501–3519 (2012)ADS CrossRef
    13.Peters, J.F., Walizer, L.E.: Patterned non-affine motion in granular media. J. Eng. Mech. 139(10), 1479–1490 (2013)CrossRef
    14.Nitka, M., Tejchman, J.: Modelling of concrete behaviour in uniaxial compression and tension with DEM. Granul. Matter 17(1), 145–164 (2014)CrossRef
    15.Kozicki, J., Niedostatkiewicz, M., Tejchman, J., Mühlhaus, H.-B.: Discrete modelling results of a direct shear test for granular materials versus FE results. Granul. Matter 15(5), 607–627 (2013)
    16.Nitka, M., Tejchman, J., Kozicki, J., Leśniewska, D.: DEM analysis of micro-structural events within granular shear zones under passive earth pressure conditions. Granul. Matter 3, 325–343 (2015)CrossRef
    17.Rognon, P., Einav, I.: Thermal transients and convective particle motion in dense granular materials. Phys. Rev. Lett. 105(21), 218301 (2010)ADS CrossRef
    18.Desrues, J., Viggiani, C.: Strain localization in sand: over- view of the experiments in Grenoble using stereophotogrammetry. J. Numer. Anal. Methods Geomech. 28(4), 279–321 (2004)CrossRef
    19.Gudehus, G., Nűbel, K.: Evolution of shear bands in sand. Geotechnique 54(3), 187–201 (2004)CrossRef
    20.Tejchman, J.: FE modeling of shear localization in granular bodies with micro-polar hypoplasticity. In: Wu, Borja, (eds.) Springer Series in Geomechanics and Geoengineering. Springer, Berlin (2008)
    21.Tejchman, J., Gorski, J.: Computations of size effects in granular bodies within micro-polar hypoplasticity during plane strain compression. Int. J. Solids Struct. 45(6), 1546–1569 (2008)CrossRef MATH
    22.Gudehus, G.: Phys. Soil Mech. Springer, Berlin (2011)CrossRef
    23.Vardoulakis, I.: Shear band inclination and shear modulus in biaxial tests. Int. J. Numer. Anal. Methods Geomech. 4, 103–119 (1980)CrossRef MATH
    24.Tatsuoka, F., Nakamura, S., Huang, C.C., Tani, K.: Strength anisotropy and shear band direction in plane strain test of sand. Soils Found. 30(1), 35–54 (1990)CrossRef
    25.Han, C., Vardoulakis, I.: Plane strain compression experiments on water saturated fine-grained sand. Geotechnique 41, 49–78 (1991)CrossRef
    26.Yoshida, T., Tatsuoka, F., Siddiquee, M.S.A.: Shear banding in sands observed in plane strain compression. In: Chambon, R., Desrues, J., Vardoulakis, I. (eds.) Localisation and Bifurcation Theory for Soils and Rocks, pp. 165–181. Balkema, Rotterdam (1994)
    27.Harris, W.W., Viggiani, G., Mooney, M.A., Finno, R.J.: Use of stereophotogrammetry to analyze the development of shear bands in sand. Geotech. Test J. 18(4), 405–420 (1995)CrossRef
    28.Alshibli, K.A., Sture, S.: Shear band formation in plane strain experiments of sand. J. Geotech. Geoenviron. Eng. ASCE 126(6), 495–503 (2000)CrossRef
    29.Mokni, M., Desrues, J.: Strain localization measurements in undrained plane strain biaxial tests on Hostun RF sand. Mech. Cohes. Frict. Mater. 4, 419–441 (1998)CrossRef
    30.de Borst, R., Műhlhaus, H.B.: Gradient dependent plasticity: formulation and algorithmic aspects. Int. J. Numer. Methods Eng. 35, 521–539 (1992)CrossRef MATH
    31.Tejchman, J., Wu, W.: Numerical study on shear band patterning in a Cosserat continuum. Acta Mech. 99, 61–74 (1993)CrossRef MATH
    32.Brinkgreve, R.: Geomaterial models and numerical analysis of softening. Dissertation, Delft University, pp. 1–153 (1994)
    33.Tejchman, J.: Influence of a characteristic length on shear zone formation in hypoplasticity with different enhancements. Comput. Geotech. 31(8), 595–611 (2004)CrossRef
    34.Tejchman, J., Wu, W.: Modeling of textural anisotropy in granular materials with micro-polar hypoplasticity. Int. J. Non-Linear Mech. 42, 882–894 (2007)ADS CrossRef
    35.Tejchman, J., Wu, W.: Non-coaxiality and stress-dilatancy rule in granular materials: FE investigation within micro-polar hypoplasticity. Int. J. Numer. Anal. Methods Geomech. 33(1), 117–142 (2009)CrossRef MATH
    36.Tejchman, J., Górski, J.: FE study of patterns of shear zones in granular bodies during plane strain compression. Acta Geotech. 5(2), 95–112 (2010)CrossRef
    37.Regueiro, R.A., Borja, R.I.: Plane strain finite element analysis of pressure sensitive plasticity with strong discontinuity. Int. J. Solids Struct. 38(21), 3647–3672 (2001)CrossRef MATH
    38.Bobinski, J., Tejchman, J.: Simulations of shear zones and cracks in engineering materials using eXtended Finite Element Method. I. J. Numer. Anal. Meth. Geom. 40, 406–435 (2016)CrossRef
    39.Oda, M., Kazama, H.: Microstructure of shear bands and its relation to the mechanisms of dilatancy and failure of dense granular soils. Geotechnique 48, 465–481 (1998)CrossRef
    40.Ord, A., Hobbs, B., Regenauer-Lieb, K.: Shear band emergence in granular materials—a numerical study. Int. J. Numer. Anal. Methods Geomech. 31, 373–393 (2007)CrossRef MATH
    41.Pena, A.A., Garcia-Rojo, R., Herrmann, H.J.: Influence of particle shape on sheared dense granular media. Granul. Matter 3–4, 279–292 (2007)CrossRef MATH
    42.Bi, Z., Sun, Q., Jin, F., Zhang, M.: Numerical study on energy transformation in granular matter under biaxial compression. Granul. Matter 13, 503–510 (2011)CrossRef
    43.Lätzel, M., Luding, S., Herrmann, H.J., Howell, D.W., Behringer, R.P.: Comparing simulation and experiment of a 2D granular couette shear device. Eur. Phys. J. E11, 325–333 (2003)
    44.Rojek, J.: Discrete element modelling of rock cutting. Comput. Methods Mater. Sci. 7(2), 224–230 (2007)
    45.Nitka, M., Combe, G., Dascalu, C., Desrues, J.: Two-scale modeling of granular materials: a DEM-FEM approach. Granul. Matter 13, 277–281 (2011)CrossRef
    46.Kozicki, J., Donze, F.V.: A new open-source software developed for numerical simulations using discrete modelling methods. Comput. Methods Appl. Mech. Eng. 197, 4429–4443 (2008)ADS CrossRef MATH
    47.Šmilauer, V., Chareyre, B.: Yade DEM Formulation. Manual, (2011)
    48.Vardoulakis, I., Goldschneider, M., Gudehus, G.: Formation of shear bands in sand bodies as a bifurcation problem I. J. Numer. Anal. Methods Geomech. 2, 99–128 (1978)CrossRef
    49.Gould, H., Tobochnik, J., Christian, W.: Introduction to computer simulation methods: application to physical systems (3rd edn), chapter 15, pp. 655. http://​www.​amazon.​com/​Introduction-Computer-Simulation-Methods-Addison-Wesley/​dp/​B00LZMC2N0 (2011)
    50.Kozicki, J., Tejchman, J., Mróz, Z.: Effect of grain roughness on strength, volume changes, elastic and dissipated energies during quasi-static homogeneous triaxial compression using DEM. Granul. Matter 14(4), 457–468 (2012)CrossRef
    51.Kozicki, J., Tejchman, J., Műhlhaus, H.B.: Discrete simulations of a triaxial compression test for sand by DEM. Int. J. Num. Anal. Methods Geomech. 38, 1923–1952 (2014)CrossRef
    52.Iwashita, K., Oda, M.: Rolling resistance at contacts in simulation of shear band development by DEM. ASCE J. Eng. Mech. 124(3), 285–292 (1998)CrossRef
    53.Cundall, P.A., Hart, R.: Numerical modeling of discontinua. J. Eng. Comput. 9, 101–113 (1992)CrossRef
    54.Kolymbas, D., Wu, W.: Recent results of triaxial tests with granular materials. Powder Technol. 60(2), 99–119 (1990)CrossRef
    55.Wu, W.: Hypoplastizität als mathematisches Modell zum mechanischen Verhalten granularer Stoffe. Heft 129, Institute for Soil- and Rock-Mechanics, University of Karlsruhe (1992)
    56.Agnolin, I., Roux, J.N.: Internal states of model isotropic granular packings. I. Assembling process, geometry, and contact networks. Phys. Rev. E 76, 061302 (2007)ADS MathSciNet CrossRef
    57.Ballhause, D., König, M., Kröplin, B.: Modelling fabric-reinforced membranes with the discrete element method. Comput. Methods Appl. Sci. 8, 51–67 (2008)CrossRef MATH
    58.Cheung, G., O’Sullivan, C.: Effective simulation of flexible lateral boundaries in two- and three-dimensional DEM simulations. Particuology 6, 483–500 (2008)CrossRef
    59.Wang, Y., Tonon, F.: Modelling triaxial test on intact rock using discrete element method with membrane boundary. J. Eng. Mech. 135(9), 1029–1037
    60.Press, W.H.: Flicker noises in astronomy and elsewhere. Comments Astrophys. 7, 103. http://​www.​lanl.​gov/​dldstp/​Flicker_​Noise_​1978.​pdf (1978)
    61.Uesugi, M., Kishida, H., Tsubakihara, Y.: Behaviour of sand particles in sand-steel friction. Soils Found. 28(1), 107–118 (1988)CrossRef
    62.Skarżyński, L., Tejchman, J.: Experimental investigations of fracture process in concrete by means of X-ray micro-computed tomography. Strain 52, 26–45 (2016)CrossRef
  • 作者单位:J. Kozicki (1)
    J. Tejchman (1)

    1. Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Gdańsk, Poland
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Physics
    Granular Media
    Industrial Chemistry and Chemical Engineering
    Engineering Fluid Dynamics
    Structural Foundations and Hydraulic Engineering
    Engineering Thermodynamics and Transport Phenomena
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1434-7636
文摘
The paper presents simulation results of a quasi-static plane strain compression test on cohesionless initially dense sand under constant lateral pressure using a three-dimensional discrete element method. Grains were modelled by means of spheres with contact moments imitating irregular particle shapes. The material behaviour was studied at both global and local levels. The stress–strain and volumetric-strain curves, distribution of void ratio, resultant grain rotation and contact forces were calculated. The main attention was paid to the appearance of plane strain granular micro-structures like vortex and anti-vortex structures in the granular specimen during deformation. In order to detect two-dimensional vortex and anti-vortex structures, a method based on orientation angles of displacement fluctuation vectors of neighbouring single spheres was used. The effect of the method parameters was also analyzed.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700