DNA methylation in glioblastoma: impact on gene expression and clinical outcome
详细信息    查看全文
  • 作者:Amandine Etcheverry (1) (2) (3)
    Marc Aubry (3)
    Marie de Tayrac (4)
    Elodie Vauleon (1) (5)
    Rachel Boniface (1)
    Frederique Guenot (2) (3)
    Stephan Saikali (6)
    Abderrahmane Hamlat (7)
    Laurent Riffaud (7)
    Philippe Menei (8)
    Veronique Quillien (1) (5)
    Jean Mosser (1) (2) (3)
  • 刊名:BMC Genomics
  • 出版年:2010
  • 出版时间:December 2010
  • 年:2010
  • 卷:11
  • 期:1
  • 全文大小:5924KB
  • 参考文献:1. Wen PY, Kesari S: Malignant gliomas in adults. / N Engl J Med 2008, 359: 492鈥?07. f="http://dx.doi.org/10.1056/NEJMra0708126">CrossRef
    2. de Tayrac M, Etcheverry A, Aubry M, Saikali S, Hamlat A, Quillien V, Le Treut A, Galibert MD, Mosser J: Integrative genome-wide analysis reveals a robust genomic glioblastoma signature associated with copy number driving changes in gene expression. / Genes Chromosomes Cancer 2009, 48: 55鈥?8. f="http://dx.doi.org/10.1002/gcc.20618">CrossRef
    3. Nigro JM, Misra A, Zhang L, Smirnov I, Colman H, Griffin C, Ozburn N, Chen M, Pan E, Koul D, / et al.: Integrated array-comparative genomic hybridization and expression array profiles identify clinically relevant molecular subtypes of glioblastoma. / Cancer Res 2005, 65: 1678鈥?686. f="http://dx.doi.org/10.1158/0008-5472.CAN-04-2921">CrossRef
    4. Herman JG, Baylin SB: Gene silencing in cancer in association with promoter hypermethylation. / N Engl J Med 2003, 349: 2042鈥?054. f="http://dx.doi.org/10.1056/NEJMra023075">CrossRef
    5. Karpf AR, Matsui S: Genetic disruption of cytosine DNA methyltransferase enzymes induces chromosomal instability in human cancer cells. / Cancer Res 2005, 65: 8635鈥?639. f="http://dx.doi.org/10.1158/0008-5472.CAN-05-1961">CrossRef
    6. Garcia-Manero G: Demethylating agents in myeloid malignancies. / Curr Opin Oncol 2008, 20: 705鈥?10. f="http://dx.doi.org/10.1097/CCO.0b013e328313699c">CrossRef
    7. Mack GS: Epigenetic cancer therapy makes headway. / J Natl Cancer Inst 2006, 98: 1443鈥?444.
    8. Watanabe T, Yokoo H, Yokoo M, Yonekawa Y, Kleihues P, Ohgaki H: Concurrent inactivation of RB1 and TP53 pathways in anaplastic oligodendrogliomas. / J Neuropathol Exp Neurol 2001, 60: 1181鈥?189.
    9. Nakamura M, Yonekawa Y, Kleihues P, Ohgaki H: Promoter hypermethylation of the RB1 gene in glioblastomas. / Lab Invest 2001, 81: 77鈥?2.
    10. Costello JF, Berger MS, Huang HS, Cavenee WK: Silencing of p16/CDKN2 expression in human gliomas by methylation and chromatin condensation. / Cancer Res 1996, 56: 2405鈥?410.
    11. Bello MJ, Rey JA: The p53/Mdm2/p14ARF cell cycle control pathway genes may be inactivated by genetic and epigenetic mechanisms in gliomas. / Cancer Genet Cytogenet 2006, 164: 172鈥?73. f="http://dx.doi.org/10.1016/j.cancergencyto.2005.07.002">CrossRef
    12. Amatya VJ, Naumann U, Weller M, Ohgaki H: TP53 promoter methylation in human gliomas. / Acta Neuropathol 2005, 110: 178鈥?84. f="http://dx.doi.org/10.1007/s00401-005-1041-5">CrossRef
    13. Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJ, Janzer RC, Ludwin SK, Allgeier A, Fisher B, Belanger K, / et al.: Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. / Lancet Oncol 2009, 10: 459鈥?66. f="http://dx.doi.org/10.1016/S1470-2045(09)70025-7">CrossRef
    14. Gorlia T, van den Bent MJ, Hegi ME, Mirimanoff RO, Weller M, Cairncross JG, Eisenhauer E, Belanger K, Brandes AA, Allgeier A, / et al.: Nomograms for predicting survival of patients with newly diagnosed glioblastoma: prognostic factor analysis of EORTC and NCIC trial 26981鈥?2981/CE.3. / Lancet Oncol 2008, 9: 29鈥?8. f="http://dx.doi.org/10.1016/S1470-2045(07)70384-4">CrossRef
    15. Keshet I, Schlesinger Y, Farkash S, Rand E, Hecht M, Segal E, Pikarski E, Young RA, Niveleau A, Cedar H, Simon I: Evidence for an instructive mechanism of de novo methylation in cancer cells. / Nat Genet 2006, 38: 149鈥?53. f="http://dx.doi.org/10.1038/ng1719">CrossRef
    16. Lee TI, Jenner RG, Boyer LA, Guenther MG, Levine SS, Kumar RM, Chevalier B, Johnstone SE, Cole MF, Isono K, / et al.: Control of developmental regulators by Polycomb in human embryonic stem cells. / Cell 2006, 125: 301鈥?13. f="http://dx.doi.org/10.1016/j.cell.2006.02.043">CrossRef
    17. Kim TY, Zhong S, Fields CR, Kim JH, Robertson KD: Epigenomic profiling reveals novel and frequent targets of aberrant DNA methylation-mediated silencing in malignant glioma. / Cancer Res 2006, 66: 7490鈥?501. f="http://dx.doi.org/10.1158/0008-5472.CAN-05-4552">CrossRef
    18. Foltz G, Yoon JG, Lee H, Ryken TC, Sibenaller Z, Ehrich M, Hood L, Madan A: DNA methyltransferase-mediated transcriptional silencing in malignant glioma: a combined whole-genome microarray and promoter array analysis. / Oncogene 2009, 28: 2667鈥?677. f="http://dx.doi.org/10.1038/onc.2009.122">CrossRef
    19. Wu X, Rauch TA, Zhong X, Bennett WP, Latif F, Krex D, Pfeifer GP: CpG island hypermethylation in human astrocytomas. / Cancer Res 2010, 70: 2718鈥?727. f="http://dx.doi.org/10.1158/0008-5472.CAN-09-3631">CrossRef
    20. Martinez R, Martin-Subero JI, Rohde V, Kirsch M, Alaminos M, Fernandez AF, Ropero S, Schackert G, Esteller M: A microarray-based DNA methylation study of glioblastoma multiforme. / Epigenetics 2009, 4: 255鈥?64.
    21. Noushmehr H, Weisenberger DJ, Diefes K, Phillips HS, Pujara K, Berman BP, Pan F, Pelloski CE, Sulman EP, Bhat KP, / et al.: Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. / Cancer Cell 2010, 17: 510鈥?22. f="http://dx.doi.org/10.1016/j.ccr.2010.03.017">CrossRef
    22. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, Scheithauer BW, Kleihues P: The 2007 WHO classification of tumours of the central nervous system. / Acta Neuropathol 2007, 114: 97鈥?09. f="http://dx.doi.org/10.1007/s00401-007-0243-4">CrossRef
    23. Kang MR, Kim MS, Oh JE, Kim YR, Song SY, Seo SI, Lee JY, Yoo NJ, Lee SH: Mutational analysis of IDH1 codon 132 in glioblastomas and other common cancers. / Int J Cancer 2009, 125: 353鈥?55. f="http://dx.doi.org/10.1002/ijc.24379">CrossRef
    24. Martinez R, Schackert G: Epigenetic aberrations in malignant gliomas: an open door leading to better understanding and treatment. / Epigenetics 2007, 2: 147鈥?50. f="http://dx.doi.org/10.4161/epi.2.3.5049">CrossRef
    25. Bulk E, Sargin B, Krug U, Hascher A, Jun Y, Knop M, Kerkhoff C, Gerke V, Liersch R, Mesters RM, / et al.: S100A2 induces metastasis in non-small cell lung cancer. / Clin Cancer Res 2009, 15: 22鈥?9. f="http://dx.doi.org/10.1158/1078-0432.CCR-08-0953">CrossRef
    26. Tseng MY, Liu SY, Chen HR, Wu YJ, Chiu CC, Chan PT, Chiang WF, Liu YC, Lu CY, Jou YS, Chen JY: Serine protease inhibitor (SERPIN) B1 promotes oral cancer cell motility and is over-expressed in invasive oral squamous cell carcinoma. / Oral Oncol 2009, 45: 771鈥?76. f="http://dx.doi.org/10.1016/j.oraloncology.2008.11.013">CrossRef
    27. Alaminos M, Davalos V, Ropero S, Setien F, Paz MF, Herranz M, Fraga MF, Mora J, Cheung NK, Gerald WL, Esteller M: EMP3, a myelin-related gene located in the critical 19q13.3 region, is epigenetically silenced and exhibits features of a candidate tumor suppressor in glioma and neuroblastoma. / Cancer Res 2005, 65: 2565鈥?571. f="http://dx.doi.org/10.1158/0008-5472.CAN-04-4283">CrossRef
    28. Kannan-Thulasiraman P, Seachrist DD, Mahabeleshwar GH, Jain MK, Noy N: Fatty acid binding protein 5 and PPAR{beta}/{delta} are critical mediators of EGFR-induced carcinoma cell growth. / J Biol Chem 2010.
    29. Miura T, Nishinaka T, Terada T: Different functions between human monomeric carbonyl reductase 3 and carbonyl reductase 1. / Mol Cell Biochem 2008, 315: 113鈥?21. f="http://dx.doi.org/10.1007/s11010-008-9794-5">CrossRef
    30. Takenaka K, Ogawa E, Oyanagi H, Wada H, Tanaka F: Carbonyl reductase expression and its clinical significance in non-small-cell lung cancer. / Cancer Epidemiol Biomarkers Prev 2005, 14: 1972鈥?975. f="http://dx.doi.org/10.1158/1055-9965.EPI-05-0060">CrossRef
    31. Nagarajan RP, Costello JF: Epigenetic mechanisms in glioblastoma multiforme. / Semin Cancer Biol 2009, 19: 188鈥?97. f="http://dx.doi.org/10.1016/j.semcancer.2009.02.005">CrossRef
    32. Quinlan KG, Verger A, Yaswen P, Crossley M: Amplification of zinc finger gene 217 (ZNF217) and cancer: when good fingers go bad. / Biochim Biophys Acta 2007, 1775: 333鈥?40.
    33. Banck MS, Li S, Nishio H, Wang C, Beutler AS, Walsh MJ: The ZNF217 oncogene is a candidate organizer of repressive histone modifiers. / Epigenetics 2009, 4: 100鈥?06. f="http://dx.doi.org/10.4161/epi.4.2.7953">CrossRef
    34. Feng L, Hatten ME, Heintz N: Brain lipid-binding protein (BLBP): a novel signaling system in the developing mammalian CNS. / Neuron 1994, 12: 895鈥?08. f="http://dx.doi.org/10.1016/0896-6273(94)90341-7">CrossRef
    35. Kaloshi G, Mokhtari K, Carpentier C, Taillibert S, Lejeune J, Marie Y, Delattre JY, Godbout R, Sanson M: FABP7 expression in glioblastomas: relation to prognosis, invasion and EGFR status. / J Neurooncol 2007, 84: 245鈥?48. f="http://dx.doi.org/10.1007/s11060-007-9377-4">CrossRef
    36. Jung Y, Park J, Bang YJ, Kim TY: Gene silencing of TSPYL5 mediated by aberrant promoter methylation in gastric cancers. / Lab Invest 2008, 88: 153鈥?60. f="http://dx.doi.org/10.1038/labinvest.3700706">CrossRef
    37. Kim EJ, Lee SY, Kim TR, Choi SI, Cho EW, Kim KC, Kim IG: TSPYL5 is involved in cell growth and the resistance to radiation in A549 cells via the regulation of p21(WAF1/Cip1) and PTEN/AKT pathway. / Biochem Biophys Res Commun 2010, 392: 448鈥?53. f="http://dx.doi.org/10.1016/j.bbrc.2010.01.045">CrossRef
    38. Phillips HS, Kharbanda S, Chen R, Forrest WF, Soriano RH, Wu TD, Misra A, Nigro JM, Colman H, Soroceanu L, / et al.: Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. / Cancer Cell 2006, 9: 157鈥?73. f="http://dx.doi.org/10.1016/j.ccr.2006.02.019">CrossRef
    39. Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD, Miller CR, Ding L, Golub T, Mesirov JP, / et al.: Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. / Cancer Cell 2010, 17: 98鈥?10. f="http://dx.doi.org/10.1016/j.ccr.2009.12.020">CrossRef
    40. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, / et al.: Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. / N Engl J Med 2005, 352: 987鈥?96. f="http://dx.doi.org/10.1056/NEJMoa043330">CrossRef
    41. Dunn J, Baborie A, Alam F, Joyce K, Moxham M, Sibson R, Crooks D, Husband D, Shenoy A, Brodbelt A, / et al.: Extent of MGMT promoter methylation correlates with outcome in glioblastomas given temozolomide and radiotherapy. / Br J Cancer 2009, 101: 124鈥?31. f="http://dx.doi.org/10.1038/sj.bjc.6605127">CrossRef
    42. Stolt CC, Rehberg S, Ader M, Lommes P, Riethmacher D, Schachner M, Bartsch U, Wegner M: Terminal differentiation of myelin-forming oligodendrocytes depends on the transcription factor Sox10. / Genes Dev 2002, 16: 165鈥?70. f="http://dx.doi.org/10.1101/gad.215802">CrossRef
    43. Salvati M, Formichella AI, D'Elia A, Brogna C, Frati A, Giangaspero F, Delfini R, Santoro A: Cerebral glioblastoma with oligodendrogliomal component: analysis of 36 cases. / J Neurooncol 2009, 94: 129鈥?34. f="http://dx.doi.org/10.1007/s11060-009-9815-6">CrossRef
  • 作者单位:Amandine Etcheverry (1) (2) (3)
    Marc Aubry (3)
    Marie de Tayrac (4)
    Elodie Vauleon (1) (5)
    Rachel Boniface (1)
    Frederique Guenot (2) (3)
    Stephan Saikali (6)
    Abderrahmane Hamlat (7)
    Laurent Riffaud (7)
    Philippe Menei (8)
    Veronique Quillien (1) (5)
    Jean Mosser (1) (2) (3)

    1. CNRS UMR6061 Institut de G茅n茅tique et D茅veloppement, Universit茅 de Rennes 1, UEB, IFR140, Rennes, France
    2. Service de G茅n茅tique Mol茅culaire et G茅nomique, CHU Rennes, France
    3. Plateforme G茅nomique Sant茅 Biogenouest庐 Rennes, France
    4. INSERM U946, Fondation Jean Dausset, CEPH, Paris, France
    5. D茅partement de Biologie M茅dicale, Centre Eug猫ne Marquis, Rennes, France
    6. Service d'Anatomie et Cytologie Pathologique, CHU Rennes, France
    7. Service de Neurochirurgie, CHU Rennes, France
    8. Service de Neurochirurgie, CHU Angers, France
文摘
Background Changes in promoter DNA methylation pattern of genes involved in key biological pathways have been reported in glioblastoma. Genome-wide assessments of DNA methylation levels are now required to decipher the epigenetic events involved in the aggressive phenotype of glioblastoma, and to guide new treatment strategies. Results We performed a whole-genome integrative analysis of methylation and gene expression profiles in 40 newly diagnosed glioblastoma patients. We also screened for associations between the level of methylation of CpG sites and overall survival in a cohort of 50 patients uniformly treated by surgery, radiotherapy and chemotherapy with concomitant and adjuvant temozolomide (STUPP protocol). The methylation analysis identified 616 CpG sites differentially methylated between glioblastoma and control brain, a quarter of which was differentially expressed in a concordant way. Thirteen of the genes with concordant CpG sites displayed an inverse correlation between promoter methylation and expression level in glioblastomas: B3GNT5, FABP7, ZNF217, BST2, OAS1, SLC13A5, GSTM5, ME1, UBXD3, TSPYL5, FAAH, C7orf13, and C3orf14. Survival analysis identified six CpG sites associated with overall survival. SOX10 promoter methylation status (two CpG sites) stratified patients similarly to MGMT status, but with a higher Area Under the Curve (0.78 vs. 0.71, p- value < 5e-04). The methylation status of the FNDC3B, TBX3, DGKI, and FSD1 promoters identified patients with MGMT -methylated tumors that did not respond to STUPP treatment (p- value < 1e-04). Conclusions This study provides the first genome-wide integrative analysis of DNA methylation and gene expression profiles obtained from the same GBM cohort. We also present a methylome-based survival analysis for one of the largest uniformly treated GBM cohort ever studied, for more than 27,000 CpG sites. We have identified genes whose expression may be tightly regulated by epigenetic mechanisms and markers that may guide treatment decisions.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700