Surface, Nanomechanical, and Optical Properties of Mo-Doped GeGaAs Thin Film Deposited by Thermionic Vacuum Arc
详细信息    查看全文
  • 作者:Suat Pat ; Volkan Şenay ; Soner Özen ; Şadan Korkmaz
  • 关键词:Mo doping ; Ge doping ; hybrid properties ; surface characteristics ; surface free energy
  • 刊名:Journal of Electronic Materials
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:45
  • 期:1
  • 页码:255-261
  • 全文大小:953 KB
  • 参考文献:1.W. Chen, D.C. Qi, X.Y. Gao, and A.T.S. Wee, Prog. Surf. Sci. 84, 279 (2009).CrossRef
    2.K.G. Stephens, Nucl. Instrum. Methods Phys. Res., Sect. A 209, 589 (1983).CrossRef
    3.J. Wallentin and M.T. Borgstrom, J. Mater. Res. 26, 2142 (2011).CrossRef
    4.P.M. Petroff and S.P. Denbaars, Superlattices Microstruct. 15, 15 (1994).CrossRef
    5.C.H. Liu, T.K. Lin, S.J. Chang, Y.K. Su, Y.Z. Chiou, C.K. Wang, S.P. Chang, J.J. Tang, and B.R. Huang, Surf. Coat. Technol. 200, 3250 (2006).CrossRef
    6.E.Y. Chang, G.T. Cibuzar, and K.P. Pande, IEEE Trans. Electron Devices 35, 1412 (1988).CrossRef
    7.W.E. Hoke, P.J. Lemonias, T.D. Kennedy, A. Torabi, E.K. Tong, R.J. Bourque, J.H. Jang, G. Cueva, D.C. Dumka, I. Adesida, K.L. Chang, and K.C. Hsieh, JVST B 19, 1505 (2001).
    8.W. Paschoal, S. Kumar, D. Jacobsson, A. Johannes, V. Jain, C.M. Canali, A. Pertsova, C. Ronning, K.A. Dick, L. Samuelson, and H. Pettersson, Appl. Phys. Lett. 104, 153112 (2014).CrossRef
    9.M. Ishii, A. Koizumi, Y. Takeda, and Y. Fujiwara, J. Appl. Phys. 115, 133510 (2014).CrossRef
    10.A. Maassdorf, M. Hoffmann, and M. Weyers, J. Cryst. Growth 315, 57 (2011).CrossRef
    11.F.R. Ruhge and R.E. Peale, Infrared Technol. Appl. XXX 5406, 872 (2004).CrossRef
    12.J. Gebauer, R. Krause Rehberg, C. Domke, P. Ebert, and K. Urban, Phys. Rev. Lett. 78, 3334 (1997).CrossRef
    13.S.Z. Sun, E.A. Armour, K. Zheng, and C.F. Schaus, J. Cryst. Growth 113, 103 (1991).CrossRef
    14.W.C. Mitchel and P.W. Yu, J. Appl. Phys. 57, 623 (1985).CrossRef
    15.D.S. Chemla, D.A.B. Miller, P.W. Smith, A.C. Gossard, and W. Wiegmann, IEEE J. Quantum Electron. 20, 265 (1984).CrossRef
    16.T.Y. Allen and T.A. Polyanskaya, Semiconductors 31, 498 (1997).CrossRef
    17.S. Okur, M. Kalkanci, S. Pat, N. Ekem, T. Akan, Z. Balbag, G. Musa, and M. Tanoglu, Phys. C 466, 205 (2007).CrossRef
    18.S. Pat, M.Z. Balbag, and S. Korkmaz, Nano 8, 1350028 (2013).
    19.S. Pat, S. Temel, N. Ekem, S. Korkmaz, M. Ozkan, and M.Z. Balbag, J. Plast. Film Sheet 27, 127 (2011).CrossRef
    20.S. Pat, Ş. Korkmaz, and M.Z. Balbağ, J. Nanoelectron. Optoelectron. 9, 437 (2014).CrossRef
    21.G.S. Musa, H. Ehrich, and J. Schuhmann, IEEE Trans. Plasma Sci. 25, 386 (1997).CrossRef
    22.M. Raposo, Q. Ferreira, and P.A. Ribeiro, Mod. Res. Educ. Top. Microsc. 1, 758–769 (2007).
    23. http://​www.​graphpad.​com/​guides/​prism/​6/​statistics/​index.​htm?​stat_​skewness_​and_​kurtosis.​htm . Accessed 21 Nov 2014.
    24. www.​eusolar.​ege.​edu.​tr/​belgeler/​lab/​AFM_​Manual.​pdf . Accessed 21 Nov 2014.
    25.M. Nastasi, J.P. Hirvonen, T.R. Jervis, G.M. Pharr, and W.C. Oliver, J. Mater. Res. 3, 226 (1988).CrossRef
    26.W.C. Oliver and G.M. Pharr, MRSBEA 35, 897 (2010).
    27.W.C. Oliver and G.M. Pharr, J. Mater. Res. 19, 3 (2004).CrossRef
    28.J. Malzbender and G. de With, J. Mater. Res. 17, 502 (2002).CrossRef
    29.C.A. Charitidis, Ind. Eng. Chem. Res. 50, 565 (2011).CrossRef
    30.S. Jeetendra, H. Nagabhushana, K. Mrudula, C.S. Naveen, P. Raghu, and H.M. Mahesh, Int. J. Electrochem. Sci. 9, 2944 (2014).
    31.V. Madhavi, P. Kondaiah, O.M. Hussain, and S. Uthanna, Conf. Paper Sci., 104047 (2013).
    32.A. Mekki and N. Tabet, Acta Phys. Pol. A 125, 367 (2014).CrossRef
  • 作者单位:Suat Pat (1)
    Volkan Şenay (2)
    Soner Özen (1)
    Şadan Korkmaz (1)

    1. Physics Department, Eskisehir Osmangazi University, Eskisehir, Turkey
    2. Physics Department, Bayburt University, Bayburt, Turkey
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Optical and Electronic Materials
    Characterization and Evaluation Materials
    Electronics, Microelectronics and Instrumentation
    Solid State Physics and Spectroscopy
  • 出版者:Springer Boston
  • ISSN:1543-186X
文摘
Mo-doped and undoped GeGaAs layers have been deposited by the thermionic vacuum arc (TVA) method, an alternative, fast plasma deposition technique. The thicknesses of the deposited layers were identical. The surface, mechanical, and optical properties of the deposited layers were studied to determine the influence of Mo doping on GeGaAs. The transparency of GeGaAs was shifted towards the near-infrared region by Mo doping. Bandgap values shifted by approximately 0.3 eV. In other words, the bandgap value of Mo-doped GeGaAs was nearly equal to that of GaAs materials. The average roughness and grain size of the Mo-doped material were smaller than for the GeGaAs layer. The particle distributions of the Mo-doped and undoped GeGaAs were almost perfect Gaussians. However, the mean height of the Mo-doped GeGaAs grains was six times that for undoped GeGaAs. The surface was homogeneous. The Mo-doped layer showed greater absorbance than the GeGaAs material. The produced Mo-doped sample showed hybrid properties.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700