The transport of water in subduction zones
详细信息    查看全文
  • 作者:YongFei Zheng ; RenXu Chen ; Zheng Xu ; ShaoBing Zhang
  • 关键词:Subduction zones ; Oceanic crust ; Mantle wedge ; Thermal structure ; Hydrous minerals ; Water transport ; Arc magmatism
  • 刊名:Science China Earth Sciences
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:59
  • 期:4
  • 页码:651-682
  • 全文大小:4,519 KB
  • 参考文献:Abbott D, Drury R, Smith W H F. 1994. Flat to steep transition in subduction style. Geology, 22: 937–940CrossRef
    Abers G A, van Keken P E, Kneller E A, Ferris A, Stachni J C. 2006. The thermal structure of subduction zones constrained by seismic imaging: Implications for slab dehydration and wedge flow. Earth Planet Sci Lett, 241: 387–397.CrossRef
    Akaogi M, Akimoto S I. 1980. High-pressure stability of a dense hydrous magnesian silicate Mg23Si8O42H6 and some geophysical implications. J Geophys Res, 85: 6944–6948CrossRef
    Alonso-Perez R, Muentener O, Ulmer P. 2009. Igneous garnet and amphibole fractionation in the roots of island arcs: Experimental constraints on andesitic liquids. Contrib Mineral Petrol, 157: 541–558CrossRef
    Anderson R N, Uyeda S, Miyashiro A. 1976. Geophysical and geochemical constraints at converging plate boundaries—Part I: Dehydration in the downgoing slab. Geophys J Int, 44: 333–357CrossRef
    Anderson R N, Delong S E, Schwarz W M. 1978. Thermal model for subduction with dehydration in the downgoing slab. J Geol, 86: 731–739CrossRef
    Angiboust S, Wolf S, Burov E, Agard P, Yamato P. 2012. Effect of fluid circulation on subduction interface tectonic processes: Insights from thermo-mechanical numerical modelling. Earth Planet Sci Lett, 357: 238–248CrossRef
    Arcay D, Tric E, Doin M P. 2005. Numerical simulations of subduction zones: Effect of slab dehydration on the mantle wedge dynamics. Phys Earth Planet Inter, 149: 133–153CrossRef
    Arcay D, Tric E, Doin M P. 2007. Slab surface temperature in subduction zones: Influence of the interplate decoupling depth and upper plate thinning processes. Earth Planet Sci Lett, 255: 324–338CrossRef
    Arcay D, Lallemand S, Doin M-P. 2008. Back-arc strain in subduction zones: statistical observations versus numerical modeling. Geochem Geophys Geosyst, 9: Q05015CrossRef
    Atherton M P, Petford N. 1993. Generation of sodium-rich magmas from newly underplated basaltic crust. Nature, 362: 144–146CrossRef
    Auzanneau E, Vielzeuf D, Schmidt M W. 2006. Experimental evidence of decompression melting during exhumation of subducted continental crust. Contrib Mineral Petrol, 152: 125–148CrossRef
    Bailey E, Holloway J R. 2000. Experimental determination of elastic properties of talc to 800°C, 0.5 GPa; calculations of the effect on hydrated peridotite, and implications for cold subduction zones. Earth Planet Sci Lett, 183: 487–498CrossRef
    Bebout G E. 2007. Metamorphic chemical geodynamics of subduction zones. Earth Planet Sci Lett, 260: 373–393CrossRef
    Bebout G E, Agard P, Kobayashi K, Moriguti T, Nakamura E. 2013. Devolatilization history, and related trace element mobility, in deeply subducted sedimentary rocks: SIMS evidence from Western Alps HP/UHP suites. Chem Geol, 342: 1–20CrossRef
    Bebout G E. 2014. Chemical and isotopic cycling in subduction zones. In: Hollan H D, Turekian K K, eds. Treatise on Geochemistry. 2nd ed. Amsterdam: Elsevier. 703–747CrossRef
    Behn M D, Kelemen P B, Hirth G, Hacker B R, Massonne H-J. 2011. Diapirs as the source of the sediment signature in arc lavas. Nature Geosci, 4: 641–646CrossRef
    Bird P. 1978. Stress and temperatures in subduction shear zones: Tonga and Mariana. Geophys J Roy Astr Soc, 55: 411–434CrossRef
    Boettcher A L, Wyllie P J. 1969. The system CaO-SiO2-CO2-H2O—III. Second critical end-point on the melting curve. Geochim Cosmochim Acta, 33: 611–632CrossRef
    Bolfan-Casanova N. 2005. Water in the Earth’s mantle. Mineral Mag, 69: 229–257CrossRef
    Bose K, Ganguly J. 1995. Experimental and theoretical studies of the stabilities of talc, antigorite and phase A at high pressures with applications to subduction processes. Earth Planet Sci Lett, 136: 109–121CrossRef
    Bouilhol P, Magni V, van Hunen J, Kaislaniemi L. 2015. A numerical approach to melting in warm subduction zones. Earth Planet Sci Lett, 411: 37–44CrossRef
    Burnley P C, Navrotsky A. 1996. Synthesis of high-pressure hydrous magnesium silicates: Observations and analysis. Am Mineral, 81: 317–326CrossRef
    Cagnioncle A M, Parmentier E M, Elkins-Tanton L T. 2007. Effect of solid flow above a subducting slab on water distribution and melting at convergent plate boundaries. J Geophys Res, 112: B09402
    Cannaó E, Agostini S., Scambelluri M, Tonarini S, Godard M. 2015. B, Sr, and Pb isotope geochemistry of high pressure Alpine peridotites reveals element recycling during dehydration of serpentinized precursors in subduction mélange (Cima di Gagnone, Swiss Central Alps). Geochim Cosmochim Acta, 163: 80–100CrossRef
    Chen R-X, Zheng Y-F, Hu Z. 2012. Episodic fluid action during exhumation of deeply subducted continental crust: Geochemical constraints from zoisite-quartz vein and host metabasite in the Dabie orogen. Lithos, 155: 146–166CrossRef
    Chopin C. 2003. Ultrahigh-pressure metamorphism: Tracing continental crust into the mantle. Earth Planet Sci Lett, 212: 1–14CrossRef
    Clarke G L, Powell R, Fitzherbert J. 2006. A. The lawsonite paradox: A comparison of field evidence and mineral equilibria modelling. J Metamorph Geol, 24: 715–725CrossRef
    Cooper L B, Ruscitto D M, Plank T, Wallace P J, Syracuse E M, Manning C E. 2012. Global variations in H2O/Ce. 1. Slab surface temperatures beneath volcanic arcs. Geochem Geophys Geosyst. 1. (3), Q03024; doi:10.1029/2011GC003902
    Dasgupta R, Hirschmann M, Withers A C. 2004. Deep global cycling of carbon constrained by the solidus of anhydrous, carbonated eclogite under upper mantle conditions. Earth Planet Sci Lett, 227: 73–85CrossRef
    Defant M J, Drummond M S. 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature, 347: 662–665CrossRef
    Delany J M, Helgeson H C. 1978. Calculation of the thermodynamic consequences of dehydration in subducting oceanic crust to 100 kb and > 800 °C. Am J Sci, 278: 638–686CrossRef
    Deschamps F, Godard M, Guillot S, Hattori K. 2013. Geochemistry of subduction zone serpentinites: A review. Lithos, 178: 96–127CrossRef
    Doglioni C, Tonarini S, Innocenti F. 2009. Mantle wedge asymmetries and geochemical signatures along W- and E-NE-directed subduction zones. Lithos, 113: 179–189CrossRef
    Domanik K J, Holloway J R. 1996. The stability and composition of phengitic muscovite and associated phases from 5.5 to 1. GPa: Implications for deeply subducted sediments. Geochim Cosmochim Acta, 60: 4133–4150CrossRef
    Dorbath C, Gerbault M, Carlier G, Guiraud M. 2008. Double seismic zone of the Nazca plate in northern Chile: High-resolution velocity structure, petrological implications, and thermomechanical modeling. Geochem Geophy Geosyst, 9: Q07006CrossRef
    Drummond M S, Defant M J, Kepezhinskas P K. 1996. Petrogenesis of slab-derived trondhjemite-tonalite-dacite/adakite magmas. Trans Roy Soc Edinburgh Earth Sci, 87: 205–215CrossRef
    Dvir O, Pettke T, Fumagalli P, Kessel R. 2011. Fluids in the peridotite- water system up to 6 GPa and 800°C: New experimental constrains on dehydration reactions. Contrib Mineral Petrol, 161: 829–844CrossRef
    England P, Engdahl R, Thatcher W. 2004. Systematic variation in the depths of slabs beneath arc volcanoes. Geophys J Int, 156: 377–408CrossRef
    Ernst W G. 1999. Hornblende, the continent maker—Evolution of H2O during circum-Pacific subduction versus continental collision. Geology, 27: 675–678CrossRef
    Ernst W G, Liou J G, Coleman R G. 1995. Comparative petrotectonic study of five Eurasian ultrahigh-pressure metamorphic complexes. Intern Geol Rev, 37: 191–211CrossRef
    Espurt N, Funiciello F, Martinod J, Guillaume B, Regard V, Faccenna C, Brusset S. 2008. Flat subduction dynamics and deformation of the South American plate: Insights from analog modeling. Tectonics, 27: TC3011, doi: 10.1029/2007TC002175
    Evans B W. 2004. The serpentinite multisystem revisited: Chrysotile is metastable. Intern Geol Rev, 46: 479–506CrossRef
    Faccenda M. 2014. Water in the slab: A trilogy. Tectonophys, 614: 1–30CrossRef
    Fischer K M, Ford H A, Abt D L, Rychert C A. 2010. The lithosphereasthenosphere boundary. Annu Rev Earth Planet Sci, 38: 551–575CrossRef
    Forneris J F, Holloway J R. 2003. Phase equilibria in subducting basaltic crust: Implications for H2O release from the slab. Earth Planet Sci Lett, 214: 187–201CrossRef
    Forneris J F, Holloway J R. 2004. Evolution of mineral compositions during eclogitization of subducting basaltic crust. Am Mineral, 89: 1516–1524CrossRef
    Fryer P, Wheat C G, Mottl M J. 1999. Mariana blueschist mud volcanism: Implications for conditions within the subduction zone. Geology, 27: 103–106CrossRef
    Fumagalli P, Poli S. 2005. Experimentally determined phase relations in hydrous peridotites to 6.5 GPa and their consequences on the dynamics of subduction zones. J Petrol, 46: 555–578CrossRef
    Fumagalli P, Zanchetta S, Poli S. 2009. Alkali in phlogopite and amphibole and their effects on phase relations in metasomatized peridotites: A high-pressure study. Contrib Mineral Petrol, 158: 723–737CrossRef
    Furukawa Y. 1993. Depth of the decoupling plate interface and thermal structure under arcs. J Geophys Res, 98: 20005–20013CrossRef
    Gasparik to 1993. The role of volatiles in the transition zone. J Geophys Res, 98: 4287–4299CrossRef
    George R, Turner S, Morris J, Plank T, Hawkesworth C, Ryan J. 2005. Pressure-temperature-time paths of sediment recycling beneath the Tonga-Kermadec arc. Earth Planet Sci Lett, 233: 195–211CrossRef
    Gerya T V, Stöckhert B, Perchuk A L. 2002. Exhumation of high-pressure metamorphic rocks in a subduction channel: A numerical simulation. Tectonics, 21: 6–19CrossRef
    Gerya T V, Yuen D A. 2003. Rayleigh - Taylor instabilities from hydration and melting propel ‘cold plumes’ at subduction zones. Earth Planet Sci Lett, 212: 47–62CrossRef
    Gerya T V, Meilick F I. 2011. Geodynamic regimes of subduction under an active margin: Effects of rheological weakening by fluids and melts. J Metamorph Geol, 29: 7–31CrossRef
    Gill J. 1981. Orogenic Andesites and Plate Tectonics. New York: Springer-VerlagCrossRef
    Gorman P J, Kerrick D M, Connolly J A D. 2006. Modeling open system metamorphic decarbonation of subducting slabs. Geochem Geophys Geosyst, 7: Q04007CrossRef
    Grassi D, Schmidt M W. 2011a. Melting of carbonated pelites at 8–13 GPa: Generating K-rich carbonatites for mantle metasomatism. Contrib Mineral Petrol, 162: 169–191CrossRef
    Grassi D, Schmidt M W. 2011b. The melting of carbonated pelites fro. 7. to 70. km depth. J Petrol, 52: 765–789CrossRef
    Green D H. 1973. Experimental melting studies on a model upper mantle composition at high pressure under water-saturated and waterundersaturated conditions. Earth Planet Sci Lett, 19: 37–53CrossRef
    Green D H, Hibberson W O, Kovacs I, Rosenthal A. 2010. Water and its influence on the lithosphere-asthenosphere boundary. Nature, 467: 448–451CrossRef
    Green D H, Hibberson W O, Rosenthal A, Kovacs I, Yaxley G M, Falloon T J, Brink F. 2014. Experimental study of the influence of water on melting and phase assemblages in the upper mantle. J Petrol, 55: 2067–2096CrossRef
    Green D H. 2015. Experimental petrology of peridotites, including effects of water and carbon on melting in the Earth’s upper mantle. Phys Chem Minerals, 42: 95–122CrossRef
    Groppo C, Castelli D. 2010. Prograde P-T evolution of a lawsonite eclogite from the Monviso meta-ophiolite (Western Alps): Dehydration and redox reactions during subduction of oceanic FeTi-oxide gabbro. J Petrol, 51: 2489–2514CrossRef
    Grove T L, Chatterjee N, Parman S W, Médard E. 2006. The influence of H2O on mantle wedge melting. Earth Planet Sci Lett, 249: 74–89CrossRef
    Grove T L, Till C B, Krawczynski M J. 2012. The Role of H2O in Subduction Zone Magmatism. Annu Rev Earth Planet Sci, 40: 413–439CrossRef
    Guillot S, Hattori K. 2013. Serpentinites: Essential roles in geodynamics, arc volcanism, sustainable development, and the origin of life. Elements, 9: 95–98CrossRef
    Guillot S, Schwartz S, Reynard B, Agard P, Prigent C. 2015. Tectonic significance of serpentinites. Tectonophysics, 646: 1–19CrossRef
    Gutscher M-A, Maury R, Eissen J-P, Bourdon E. 2000a. Can slab melting be caused by flat subduction? Geology, 28: 535–538CrossRef
    Gutscher M-A, Spakman W, Bijwaard H, Engdahl E R. 2000b. Geodynamics of flat subduction: Seismicity and tomographic constraints from the Andean margin. Tectonics, 19: 814–833CrossRef
    Hacker B R, Peacock S M, Abers G A, Holloway S D. 2003. Subduction factory. 2. Are intermediate-depth earthquakes in subducting slabs linked to metamorphic dehydration reactions? J Geophys Res, 108. 2030. doi: 10.1029/2001JB001129
    Hacker B R. 2008. H2O subduction beyond arcs. Geochem Geophys Geosyst, 9: Q03001CrossRef
    Hattori K H, Guillot S. 2003. Volcanic fronts form as a consequence of serpentinite dehydration in the forearc mantle wedge. Geology, 31: 525–528CrossRef
    Hebert L B, Antoshechkina P, Asimow P, Gurnis M. 2009. Emergence of a low-viscosity channel in subduction zones through the coupling of mantle flow and thermodynamics. Earth Planet Sci Lett, 278: 243–256CrossRef
    Hermann J, Green D H. 2001. Experimental constraints on high pressure melting in subducted crust. Earth Planet Sci Lett, 188: 149–168CrossRef
    Hermann J. 2002. Experimental constraints on phase relations in subducted continental crust. Contrib Mineral Petrol, 143: 219–235CrossRef
    Hermann J, Spandler C, Hack A, Korsakov A V. 2006. Aqueous fluids and hydrous melts in high-pressure and ultra-high pressure rocks: Implications for element transfer in subduction zones. Lithos, 92: 399–417CrossRef
    Hermann J, Spandler C J. 2008. Sediment melts at sub-arc depths: An experimental study. J Petrol, 49: 717–740CrossRef
    Hermann J, Rubatto D. 2009. Accessory phase control on the trace element signature of sediment melts in subduction zones. Chem Geol, 265: 512–526CrossRef
    Hermann J, Rubatto D. 2014. Subduction of continental crust to mantle depth: geochemistry of ultrahigh-pressure rocks. Treatise Geochem, 4: 309–340CrossRef
    Herzberg C, Condie K, Korenaga J. 2010. Thermal history of the Earth and its petrological expression. Earth Planet Sci Lett, 292: 79–88CrossRef
    Hilairet N, Reynard B, Wang Y, Daniel I, Merkel S, Nishiyama N, Petitgirard S. 2007. High-pressure creep of serpentine, interseismic deformation, and initiation of subduction. Science, 318: 1910–1913CrossRef
    Hofmann A W. 1988. Chemical differentiation of the Earth: The relationship between mantle, continental crust, and oceanic crust. Earth Planet Sci Lett, 90: 297–314CrossRef
    Honda S. 1985. Thermal structure beneath Tohoku, northeast Japan. Tectonophysics, 112: 69–102CrossRef
    Huang W L, Wyllie P J. 1973. Melting relations of muscovite-granite to 3. kbar as a model for fusion of metamorphosed subducted oceanic sediments. Contrib Mineral Petrol, 42: 1–14CrossRef
    Hyndman R D, Wang K L. 1993. Thermal constraints on the zone of major thrust earthquake failure: The Cascadia subduction zone. J Geophys Res, 98: 2039–2060CrossRef
    Hyndman R D, Peacock S M. 2003. Serpentinization of the forearc mantle. Earth Planet Sci Lett, 212: 417–432CrossRef
    Inoue T, Wada T, Sasaki R, Yurimoto H. 2010. Water partitioning in the Earth’s mantle. Phys Earth Planet Inter, 183: 245–251CrossRef
    Inoue T, Yurimoto H, Kudoh Y. 1995. Hydrous modified spinel, Mg1.75SiH0.5O4: A new water reservoir in the mantle transition region. Geophys Res Lett, 22: 117–120CrossRef
    Irifune T, Ringwood A E, Hibberson W O. 1994. Subduction of continental crust and terrigenous and pelagic sediments: An experimental study. Earth Planet Sci Lett, 126: 351–368CrossRef
    Iwamori H. 1998. Transportation of H2O and melting in subduction zones. Earth Planet Sci Lett, 160: 65–80CrossRef
    Iwamori H, Nakakuki to 2013. Fluid processes in subduction zones and water transport to the deep mantle. In: Shun-Ichiro Karato, ed. Physics and Chemistry of the Deep Earth. Wiley. 372–391CrossRef
    Jagoutz O E. 2010. Construction of the granitoid crust of an island arc. Part II: A quantitative petrogenetic model. Contrib Mineral Petrol, 160: 359–381CrossRef
    Jagoutz O, Müntener O, Schmidt M W, Burg J P. 2011. The roles of fluxand decompression melting and their respective fractionation lines for continental crust formation: Evidence from the Kohistan arc. Earth Planet Sci Lett, 303: 25–36CrossRef
    Johnson E R, Wallace P J, Delgado Granados H, Manea V C, Kent A J R, Bindeman I N, Donegan C S. 2009. Subduction-related volatile recycling and magma generation beneath Central Mexico: Insights from melt inclusions, oxygen isotopes and geodynamic models. J Petrol, 50: 1729–1764CrossRef
    Kanzaki M. 1991. Stability of hydrous magnesium silicates in the mantle transition zone. Phys Earth Planet Inter, 66: 307–312CrossRef
    Karato S I, Jung H. 2003. Effects of pressure on high-temperature dislocation creep in olivine. Philos Mag, 83: 401–414CrossRef
    Karato S I. 2011. Water distribution across the mantle transition zone and its implications for global material circulation. Earth Planet Sci Lett, 301: 413–423CrossRef
    Kawamoto T, Hervig R L, Holloway J R. 1996. Experimental evidence for a hydrous transition zone in the early Earth’s mantle. Earth Planet Sci Lett, 142: 587–592CrossRef
    Kawamoto T, Holloway J R. 1997. Melting temperature and partial melt chemistry to H2O-saturated mantle peridotite to 1. gigapascals. Science, 276: 240–243CrossRef
    Kawamoto to 2004. Hydrous phase stability and partial melt chemistry of H2O-saturated KLB-1 peridotite up to the uppermost lower mantle conditions. Phys Earth Planet Inter, 143-144: 387–395CrossRef
    Kawamoto T, Kanzaki M, Mibe K, Matsukage K N, Ono S. 2012. Separation of supercritical slab-fluids to form aqueous fluid and melt components in subduction zone magmatism. Proc Natl Acad Sci, 109: 18695–18700CrossRef
    Kawamoto T, Yoshikawa M, Kumagai Y, Mirabueno M H T, Okuno M, Kobayashi to 2013. Mantle wedge infiltrated with saline fluids from dehydration and decarbonation of subducting slab. Proc Natl Acad Sci, 110: 9663–9668CrossRef
    Kay R W. 1978. Aleutian magnesian andesites: Melts from subducted Pacific ocean crust. J Volcanol Geotherm Res, 4: 117–132CrossRef
    Kennedy G C, Wasserburg G J, Heard H C, Newton R C. 1962. The upper three-phase region in the system SiO2-H2O. Am J Sci, 260: 501–521CrossRef
    Kessel R, Schmidt M W, Ulmer P, Pettke to 2005. Trace element signature of subduction-zone fluids, melts and supercritical liquids at 120–180km depth. Nature, 437: 724–727CrossRef
    Kincaid C, Sacks I S. 1997. Thermal and dynamical evolution of the upper mantle in subduction zones. J Geophys Res, 102: 12295–12315CrossRef
    Kirby S H, Durham W B, Stern L A. 1991. Mantle phase changes and deep-earthquake faulting in subducting lithosphere. Science, 252: 216–225CrossRef
    Kirby S, Engdahl R E, Denlinger R. 1996. Intermediate-depth intraslab earthquakes and arc volcanism as physical expressions of crustal and uppermost mantle metamorphism in subducting slabs. In: Bebout E, Schol D W, Kirby S H, Blatt J P, eds. Subduction: Top to Bottom. Geophys Monograph Ser, 96: 195–214
    Klimm K, Blundy J D, Green T H. 2008. Trace element partitioning and accessory phase saturation during H2O-saturated melting of basalt with implications for subduction zone chemical fluxes. J Petrol, 49: 523–553CrossRef
    Konrad-Schmolke M, O’Brien P J, Zack to 2011. Fluid migration above a subducted slab-constraints on amount, pathways and major element mobility from partially overprinted eclogite-facies rocks (Sesia Zone, Western Alps). J Petrol, 52: 457–486CrossRef
    Konzett J, Ulmer P. 1999. The stability of hydrous potassic phases in lherzolitic mantle-An experimental study to 9.5 GPa in simplified and natural bulk compositions. J Petrol, 40: 629–652CrossRef
    Kudoh Y, Nagase T, Mizohata H, Ohtani E, Sasaki S, Tanaka M. 1997. Structure and crystal chemistry of phase G, a new hydrous magnesium silicate synthesized at 22 GPa and 1050°C. Geophys Res Lett, 24: 1051–1054CrossRef
    Kushiro I, Syono Y, Akimoto S I. 1968. Melting of a peridotite nodule at high pressures and high water pressures. J Geophys Res, 73: 6023–6029CrossRef
    Kushiro I. 1970. Stability of amphibole and phlogopite in the upper mantle. Carnegie Institute of Washington Yearbook, 68: 245–247
    Lagabrielle Y, Guivel C, Maury R C, Bourgois J, Fourcade S, Martin H. 2000. Magmatic-tectonic effects of high thermal regime at the site of active ridge subduction: The Chile Triple Junction model. Tectonophysics, 326: 255–268CrossRef
    Lallemand S, Heuret A, Boutelier D. 2005. On the relationships between slab dip, back-arc stress, upper plate absolute motion, and crustal nature in subduction zones. Geochem Geophys Geosyst, 6: Q09006, doi: 10.1029/2005GC000917CrossRef
    Lambert I B, Wyllie P J. 1972. Melting of gabbro (quartz eclogite) with excess water to 3. kilobars, with geological applications. J Geol, 80: 693–708CrossRef
    Leng W, Mao W. 2015. Geodynamic modeling of thermal structure of subduction zones. Sci China Earth Sci, 58: 1070–1083CrossRef
    Li X, Jeanloz R. 1991. Phases and electrical conductivity of a hydrous silicate assemblage at lower-mantle conditions. Nature, 350: 332–334CrossRef
    Li Z H. 2014. A review on the numerical geodynamic modeling of continental subduction, collision and exhumation. Sci China Earth Sci, 57: 47–69CrossRef
    Li Z H, Liu M Q, Gerya to 2015. Material transportation and fluid-melt activity in the subduction channel: Numerical modeling. Sci China Earth Sci, 58: 1251–1268CrossRef
    Liou J G, Zhang R Y, Ernst W G, Rumble D, Maruyama S. 1998. High-pressure minerals from deeply subducted metamorphic rocks. Rev Mineral, 37: 33–96
    Liou J G, Ernst W G, Zhang R Y, Tsujimori T, Jahn B M. 2009. Ultrahigh-pressure minerals and metamorphic terranes—The view from China. J Asian Earth Sci, 35: 199–231CrossRef
    Liu L G. 1986. Phase transformations in serpentine at high pressures and temperatures and implications for subducting lithosphere. Phys Earth Planet Inter, 42: 255–262CrossRef
    Liu L G. 1987. Effects of H2O on the phase behaviour of the forsterite-enstatite system at high pressures and temperatures and implications for the Earth. Phys Earth Planet Inter, 49: 142–167CrossRef
    Luth R W. 1995. Is phase A relevant to the Earth’s mantle? Geochim Cosmochim Acta, 59: 679–682CrossRef
    Magni V, Faccenna C, van Hunen J, Funiciello F. 2014. How collision triggers backarc extension: Insight into mediterranean style of extension from 3-d numerical models. Geology, 42: 511–514CrossRef
    Mann P, Taira A. 2004. Global tectonic significance of the Solomon Islands and Ontong Java Plateau convergent zone. Tectonophysics, 389: 137–190CrossRef
    Manning C E. 2004. The chemistry of subduction-zone fluids. Earth Planet Sci Lett, 223: 1–16CrossRef
    Martin H. 1999. Adakitic magmas: Modern analogues of Archaean granitoids. Lithos, 46: 411–429CrossRef
    Martin H, Smithies R H, Rapp R, Moyen J F, Champion D. 2005. An overview of adakite, tonalite-trondhjemiten-granodiorite (TTG), and sanukitoid: Relationships and some implications for crustal evolution. Lithos, 79: 1–24CrossRef
    Maruyama S, Okamoto K. 2007. Water transportation from the subducting slab into the mantle transition zone. Gondwana Res, 11: 148–165CrossRef
    McCulloch M, Gamble J. 1991. Geochemical and geodynamical constraints on subduction zone magmatism. Earth Planet Sci Lett, 102: 358–374CrossRef
    McKenzie D. 1969. Speculations on the consequences and causes of plate motion. Geophys. J Roy Astr Soc, 18: 1–32CrossRef
    Meade C, Jeanloz R. 1991. Deep-focus earthquakes and recycling of water into the Earth’s mantle. Science, 252: 68–72CrossRef
    Mei S, Kohlstedt D L. 2000a. Influence of water on plastic deformation of olivine aggregate. 1. Diffusion creep regime. J Geophys Res, 105: 21457–21469CrossRef
    Mei S, Kohlstedt D L. 2000b. Influence of water on plastic deformation of olivine aggregate. 2. Dislocation creep regime. J Geophys Res, 105: 21471–21481CrossRef
    Melekhova E, Schmidt M W, Ulmer P, Pettke to 2007. The composition of liquids coexisting with dense hydrous magnesium silicates at 11–13.5 GPa and the endpoints of the solidi in the MgO-SiO2-H2O system. Geochim Cosmochim Acta, 71: 3348–3360CrossRef
    Mibe K, Kanzaki M, Kawamoto T, Matsukage K N, Fei Y, Ono S. 2007. Second critical endpoint in the peridotite-H2O system. J Geophys Res, 112: B03201
    Mibe K, Kawamoto T, Matsukage K N, Fei Y, Ono S. 2011. Slab melting versus slab dehydration in subduction-zone magmatism. Proceed Nat Acad Sci, 108: 8177–8182CrossRef
    Millhollen G l, Irving A J, Wyllie P J. 1974. Melting interval of peridotite with 5.7 percent water to 3. kilobars. J Geol, 82: 575–587CrossRef
    Molnar P, Freedman D, Shih J. 1979. Lengths of intermediate and deep seismic zones and temperatures in downgoing slabs of lithosphere. Geophys J Roy Astr Soc, 56: 41–54CrossRef
    Molnar P, England P. 1990. Temperatures, heat flux, and frictional stress near major thrust faults. J Geophys Res, 95: 4833–4856CrossRef
    Mysen B O, Boettcher A L. 1975. Melting of a hydrous mantle: I. Phase relations of natural peridotite at high pressures and temperatures with controlled activities of water, carbon dioxide, and hydrogen. J Petrol, 16: 520–548CrossRef
    Nakamura Y, Kushiro I. 1974. Composition of the gas phase in Mg2SiO4-SiO2-H2O at 1. kbar. Carnegie Institute of Washington Yearbook, 73: 255–258
    Nakamura D. 2003. Stability of phengite and biotite in eclogites and characteristics of biotite-or orthopyroxene-bearing eclogites. Contrib Mineral Petrol, 145: 550–567CrossRef
    Nichols G T, Wyllie P J, Stern C R. 1994. Subduction zone melting of pelagic sediments constrained by melting experiments. Nature, 371: 785–788CrossRef
    Niida K, Green D H. 1999. Stability and chemical composition of pargasitic amphibole in MORB pyrolite under upper mantle conditions. Contrib Mineral Petrol, 135: 18–40CrossRef
    Nishi M, Irifune T, Tsuchiya J, Tange Y, Nishihara Y, Fujino K, Higo Y. 2014. Stability of hydrous silicate at high pressures and water transport to the deep lower mantle. Nature Geosci, 7: 224–227CrossRef
    Ohtani E, Mizobata H, Kudoh Y, Nagase T, Arashi H, Yurimoto H, Miyagi I. 1997. A new hydrous silicate, a water reservoir, in the upper part of the lower mantle. Geophys Res Lett, 24: 1047–1050
    Ohtani E, Shibata T, Kubo T, Kato to 1995. Stability of hydrous phases in the transition zone and the uppermost part of the lower mantle. Geophys Res Lett, 22: 2553–2556CrossRef
    Ohtani E, Amaike Y, Kamada S, Sakamaki T, Hirao N. 2014. Stability of hydrous phase H MgSiO4H2 under lower mantle conditions. Geophys Res Lett, 41: 8283–8287CrossRef
    Okamoto K, Maruyama S. 1998. Multi-anvil re-equilibration experiments of a Dabie Shan ultrahigh-pressure eclogite within the diamondstability fields. Island Arc, 7: 52–69CrossRef
    Okamoto K, Maruyama S. 1999. The high-pressure synthesis of lawsonite in the MORB+H2O system. Am Mineral, 84: 362–373CrossRef
    Okay A I. 1980. Mineralogy, petrology, and phase relations of glaucophane-lawsonite zone blueschists from the Tavşanli Region, Northwest Turkey. Contrib Mineral Petrol, 72: 243–255CrossRef
    Ono S. 1998. Stability limits of hydrous minerals in sediment and mid-ocean ridge basalt compositions: Implications for water transport in subduction zones. J Geophys Res, 103: 18253–18267CrossRef
    Pacalo R E G, Parise J B. 1992. Crystal structure of superhydrous B, a hydrous magnesium silicate synthesized at 1400°C an. 2. GPa. Am Mineral, 77: 681–684
    Paillat O, Elphick S C, Brown W L. 1992. The solubility of water in NaAlSi3O8 melts: A re-examination of Ab-H2O phase relationships and critical behaviour at high pressures. Contrib Mineral Petrol, 112: 490–500CrossRef
    Pawley A R, Wood B J. 1995. The high-pressure stability of talc and 10 Å phase: Potential storage sites for H2O in subduction zones. Am Mineral, 80: 998–1003CrossRef
    Pawley A R, Wood B J. 1996. The low-pressure stability of phase A, Mg7Si2O8(OH)6. Contrib Mineral Petrol, 124: 90–97CrossRef
    Peacock S M. 1987. Serpentinization and infiltration metasomatism in the Trinity peridotite, Klamath province, northern California: Implications for subduction zones. Contrib Mineral Petrol, 95: 55–70CrossRef
    Peacock S M. 1990. Fluid processes in subduction zones. Science, 248: 329–337CrossRef
    Peacock S M. 1992. Blueschist-facies metamorphism, shear heating, and P-T-t paths in subduction shear zones. J Geophys Res, 97: 17693–17707CrossRef
    Peacock S M. 1993. The importance of blueschist→eclogite dehydration reactions in subducting oceanic crust. Geol Soc Am Bull, 105: 684–694CrossRef
    Peacock S M, Rushmer T, Thompson A B. 1994. Partial melting of subducting oceanic crust. Earth Planet Sci Lett, 121: 227–244CrossRef
    Peacock S M. 1996. Thermal and petrologic structure of subduction zones. In: Bebout E, Schol D W, Kirby S H, Blatt J P, eds. Subduction: Top to Bottom. Geophys Monograph Ser, 96: 119–133
    Peacock S M, Wang K. 1999. Seismic consequences of warm versus cool subduction metamorphism: Examples from southwest and northeast Japan. Science, 286: 937–939CrossRef
    Peacock S M. 2001. Are the lower planes of double seismic zones caused by serpentine dehydration in subducting oceanic mantle? Geology, 29: 299–302CrossRef
    Pearson D G, Brenker F E, Nestola F, McNeill J, Nasdala L, Hutchison M T, Matveev S, Mather K, Silversmit G, Schmitz S, Vekemans B, Vincze L. 2014. Hydrous mantle transition zone indicated by ringwoodite included within diamond. Nature, 507: 221–224CrossRef
    Penniston-Dorland S C, Kohn M J, Manning C E. 2015. The global range of subduction zone thermal structures from exhumed blueschists and eclogites: Rocks are hotter than models. Earth Planet Sci Lett, 428: 243–254CrossRef
    Pirard C, Hermann J. 2015. Focused fluid transfer through the mantle above subduction zones. Geology, 43: 915–918CrossRef
    Plank to 2014. The chemical composition of subducting sediments. Treatise Geochem, 4: 607–629CrossRef
    Poli S. 1993. The amphibolite-eclogite transformation: An experimental study on basalt. Am J Sci, 293: 1061–1107CrossRef
    Poli S, Schmidt M W. 1995. H2O transport and release in subduction zones: Experimental constraints on basaltic and andesitic systems. J Geophys Res, 100: 22299–22314CrossRef
    Poli S, Schmidt M W. 2002. Petrology of subducted slabs. Annu Rev Earth Planet Sci, 30: 207–235CrossRef
    Poli S, Schmidt M W. 2004. Experimental subsolidus studies on epidote minerals. Rev Mineral Geochem, 56: 171–195CrossRef
    Portnyagin M, Hoernle K, Plechov P, Mironov N, Khubunaya S. 2007. Constraints on mantle melting and composition and nature of slab components in volcanic arcs from volatiles (H2O, S, Cl, F) and trace elements in melt inclusions from the Kamchatka Arc. Earth Planet Sci Lett, 255: 53–69CrossRef
    Ringwood A E, Major A. 1966. High-pressure transformations in pyroxenes. Earth Planet Sci Lett, 1: 351–357CrossRef
    Ruscitto D M, Wallace P J, Johnson E R, Kent A J R, Bindeman I N. 2010. Volatile contents of mafic magmas from cinder cones in the Central Oregon High Cascades: Implications for magma formation and mantle conditions in a hot arc. Earth Planet Sci Lett, 298: 153–161CrossRef
    Rumble D, Liou J G, Jahn B M. 2003. Continental crust subduction and ultrahigh pressure metamorphism. Treatise Geochem, 3: 293–319CrossRef
    Rüpke L H, Morgan J P, Hort M, Connolly J A D. 2004. Serpentine and the subduction zone water cycle. Earth Planet Sci Lett, 223: 17–34CrossRef
    Scambelluri M, Philippot P. 2001. Deep fluids in subduction zones. Lithos, 55: 213–227CrossRef
    Scambelluri M, Pettke T, Rampone E, Godard M, Reusser E. 2014. Petrology and trace element budgets of high-pressure peridotites indicate subduction dehydration of serpentinized mantle (Cima di Gagnone, Central Alps, Switzerland). J Petrol, 55: 459–498CrossRef
    Scambelluri M, Pettke T, Cannao E. 2015. Fluid inclusions in Alpine high-pressure peridotite reveal trace element recycling during subduction-zone dehydration of serpentinized mantle (Cima di Gagnone, Swiss Alps). Earth Planet Sci Lett, 429: 45–59CrossRef
    Schellart W P, Rawlinson N. 2010. Convergent plate margin dynamics: New perspectives from structural geology, geophysics and geodynamic modelling. Tectonophysics, 483: 4–19CrossRef
    Schmidt M W. 1996. Experimental constraints on recycling of potassium from subducted oceanic crust. Science, 272: 1927–1930CrossRef
    Schmidt M W, Poli S. 1998. Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation. Earth Planet Sci Lett, 163: 361–379CrossRef
    Schmidt M W, Vielzeuf D, Auzanneau E. 2004. Melting and dissolution of subducting crust at high pressures: The key role of white mica. Earth Planet Sci Lett, 228: 65–84CrossRef
    Schmidt M W, Poli S. 2014. Devolatilization during subduction. Treatise Geochem, 4: 669–701CrossRef
    Scholz C H. 1990. The Mechanics of Earthquakes and Faulting. Cambridge: Cambridge Unviersity Press. 439
    Schwartz S, Guillot S, Reynard B, Lafay R, Debret B, Nicollet C, Lanari P, Auzende A L. 2013. Pressure-temperature estimates of the lizardite/antigorite transition in high pressure serpentinites. Lithos, 178: 197–210CrossRef
    Sekine T, Wyllie P J. 1982. Phase relationships in the system KAl-SiO4-Mg2SiO4-SiO2-H2O as a model for hybridization between hydrous siliceous melts and peridotite. Contrib Mineral Petrol, 79: 368–374CrossRef
    Sen C, Dunn to 1994. Dehydration melting of a basaltic composition amphibolite at 1.5 and 2.0 GPa: Implications for the origin of adakites. Contrib Mineral Petrol, 117: 394–409CrossRef
    Seno T, Yamanaka Y. 1996. Double seismic zones, compressional deep trench-outer rise events, and superplumes. In: Bebout E, Schol D W, Kirby S H, Blatt J P, eds. Subduction: Top to Bottom. Geophys Monograph Ser, 96: 347–355
    Shen A H, Keppler H. 1997. Direct observation of complete miscibility in the albite-H2O system. Nature, 385: 710–712CrossRef
    Shieh S R, Mao H K, Hemley R J, Ming L C. 1998. Decomposition of phase D in the lower mantle and the fate of dense hydrous silicates in subducting slabs. Earth Planet Sci Lett, 159: 13–23CrossRef
    Sleep N H, Windley B F. 1982. Archean plate tectonics: Constraints and inferences. J Geol, 90: 363–379CrossRef
    Smyth J R, Kawamoto to 1997. Wadsleyite II: A new high pressure hydrous phase in the peridotite-H2O system. Earth Planet Sci Lett, 146: E9–E16
    Stalder R, Ulmer P, Thompson A B, Günther D. 2000. Experimental approach to constrain second critical end points in fluid/silicate systems: Near-solidus fluids and melts in the system albite-H2O. Am Mineral, 85: 68–77CrossRef
    Spandler C, Pirard C. 2013. Element recycling from subducting slabs to arc crust. Lithos, 170-171: 208–223CrossRef
    Stalder R, Ulmer P, Thompson A B, Günther D. 2001. High pressure fluids in the system MgO-SiO2-H2O under upper mantle conditions. Contrib Mineral Petrol, 140: 607–618CrossRef
    Stein S. 1995. Deep earthquakes: A fault too big? Science, 268: 49–50CrossRef
    Stern R J. 2002. Subduction zones. Rev Geophys, 40. 1012. doi: 10.1029/2001RG000108CrossRef
    Stuwe K. 2007. Geodynamics of the Lithosphere. 2nd ed. Berlin Heidelberg: Springer-Verlag. 497
    Syracuse E M, van Keken P E, Abers G A. 2010. The global range of subduction zone thermal models. Phys Earth Planet Inter, 183: 73–90CrossRef
    Tatsumi Y, Sakuyama M, Fukuyama H, Kushiro I. 1983. Generation of arc basalt magmas and thermal structure of the mantle wedge in subduction zones (Japan arc). J Geophys Res, 88: 5815–5825CrossRef
    Tatsumi Y, Hamilton D L, Nesbitt R W. 1986. Chemical characteristics of fluid phase released from a subducted lithosphere and origin of arc magmas: Evidence from high-pressure experiments and natural rocks. J Volcanol Geotherm Res, 29: 293–309CrossRef
    Tatsumi Y, Eggins S. 1995. Subduction Zone Magmatism. Boston: Blackwell Science. 211
    Thompson A B. 1992. Water in the Earth’s upper mantle. Nature, 358: 295–302CrossRef
    Thomsen T B, Schmidt M W. 2008a. Melting of carbonated pelites at 2.5-5.0 GPa, silicate-carbonatite liquid immiscibility, and potassium-carbon metasomatism of the mantle. Earth Planet Sci Lett, 267: 17–31CrossRef
    Thomsen T B, Schmidt M W. 2008b. The biotite to phengite reaction and mica-dominated melting in fluid + carbonate-saturated pelites at high pressures. J Petrol, 49: 1889–1914CrossRef
    Thurston S P. 1985. Structure, petrology, and metamorphic history of the Nome Group blueschist terrane, Salmon Lake area, Seward Peninsula, Alaska. Geol Soc Am Bull, 96: 600–617CrossRef
    Tichelaar B W, Ruff L J. 1993. Depth of seismic coupling along subduction zones. J Geophys Res, 98: 2017–2037CrossRef
    Till C B, Grove T L, Withers A C. 2012. The beginnings of hydrous mantle wedge melting. Contrib Mineral Petrol, 163: 669–688CrossRef
    Toksöz M N, Minear J W, Julian B R. 1971. Temperature field and geophysical effects of a downgoing slab. J Geophys Res, 76: 1113–1138CrossRef
    Tonegawa T, Hirahara K, Shibutani T, Iwamori H, Kanamori H, Shiomi K. 2008. Water flow to the mantle transition zone inferred from a receiver function image of the Pacific slab. Earth Planet Sci Lett, 274: 346–354CrossRef
    Tsujimori T, Sisson V B, Liou J G, Harlow G E, Sorensen S S. 2006. Very-low-temperature record of the subduction process: A review of worldwide lawsonite eclogites. Lithos, 92: 609–624CrossRef
    Tsuno K, Dasgupta R. 2011. Melting phase relation of nominally anhydrous, carbonated pelitic-eclogite at 2.5–3.0 GPa and deep cycling of sedimentary carbon. Contrib Mineral Petrol, 161: 743–763CrossRef
    Turcotte D L, Schubert G. 1973. Frictional heating of the descending lithosphere. J Geophys Res, 78: 5876–5886CrossRef
    Turcotte D L, Schubert G. 2014. Geodynamics. 3rd ed. Cambridge: Cambridge University Press. 626
    Ulmer P, Trommsdorff V. 1995. Serpentine stability to mantle depths and subduction-related magmatism. Science, 268: 858–861CrossRef
    Ulmer P, Trommsdorff V. 1999. Phase relations of hydrous mantle subducting to 30. km. Geochem Soc Spec Publ, 6: 259–281
    Uyeda S, Kanamori H. 1979. Back-arc opening and the mode of subduction. J Geophys Res, 84: 1049–1061CrossRef
    van den Beukel J, Wortel R. 1988. Thermo-mechanical modelling of arc-trench regions. Tectonophys, 154: 177–193CrossRef
    van Hunen J, van den Berg A P, Vlaar N J. 2000. A thermo-mechanical model of horizontal subduction below an overriding plate. Earth Planet Sci Lett, 182: 157–169CrossRef
    van Hunen J, van den Berg A P, Vlaar N J. 2002. The impact of the South-American plate motion and the Nazca Ridge subduction on the flat subduction below South Peru. Geophys Res. Lett, 29. 1690. doi: 10.1029/2001GL014004
    van Hunen J, van den Berg A P, Vlaar N J. 2004. Various mechanisms to induce shallow flat subduction: A numerical parameter study. Phys Earth Planet Inter, 146: 179–194CrossRef
    van Keken P E, Hacker B R, Syracuse E M, Abers G A. 2011. Subduction factory. 4. Depth-dependent flux of H2O from subducting slabs worldwide. J Geophys Res, 116: B01401
    Vielzeuf D, Montel J M. 1994. Partial melting of metagreywackes. Part I. Fluid-absent experiments and phase relationships. Contrib Mineral Petrol, 117: 375–393CrossRef
    Vielzeuf D, Schmidt M W. 2001. Melting relations in hydrous systems revisited: Application to metapelites, metagreywackes and metabasalts. Contrib Mineral Petrol, 141: 251–267CrossRef
    Wada I, Wang K. 2009. Common depth of slab-mantle decoupling: Reconciling diversity and uniformity of subduction zones. Geochem Geophy Geosyst, 10: Q10009
    Wada I, Behn M D, Shaw A M. 2012. Effects of heterogeneous hydration in the incoming plate, slab rehydration, and mantle wedge hydration on slab-derived H2O flux in subduction zones. Earth Planet Sci Lett, 353-354: 60–71CrossRef
    Wei C J, Wang W, Clarke G, Zhang L F, Song S G. 2009. Metamorphism of high/ultrahigh-pressure politic-felsic schist in the South Tianshan Orogen, NW China: Phase equilibria and P-T path. J Petrol, 50: 1973–1991.CrossRef
    Wei C J, Li Y J, Yu Y, Zhang J S. 2010. Phase equilibria and metamorphic evolution of glaucophane-bearing UHP eclogites from the western Dabieshan terrane, Central China. J Metamorph Geol, 28: 647–666CrossRef
    Wei C J, Clarke G L. 2011. Calculated phase equilibria for MORB compositions: A reappraisal of metamorphic evolution of lawsonite eclogite. J Metamorph Geol, 29. 16. 939–952CrossRef
    Wei C J, Qian J H, Tian Z L. 2013. Metamorphic evolution of medium-temperature ultra-high pressure (MT-UHP) eclogites from the South Dabie Orogen, Central China: An insight from phase equilibria modeling. J Metamorph Geol, 31: 755–774CrossRef
    Wei C J, Cui Y, Tian Z L. 2015. Metamorphic evolution of LT-UHP eclogites from the South Dabie Orogen, Central China: An insight from phase equilibria modeling. J Asian Earth Sci, 111: 966–980CrossRef
    Wyllie P J, Sekine to 1982. The formation of mantle phlogopite in subduction zone hybridization. Contrib Mineral Petrol, 79: 375–380CrossRef
    Wyllie P J. 1988. Magma genesis, plate tectonics, and chemical differentiation of the Earth. Rev Geophys, 26: 370–404CrossRef
    Yamamoto K, Akimoto S. 1977. The system MgO-SiO2-H2O at high pressures and temperatures-Stability field for hydroxyl-chondrodite, hydroxyl-clinohumite and 1. Å-phase. Am J Sci, 277: 288–312CrossRef
    Yang H, Prewitt C T, Frost D J. 1997. Crystal structure of the dense hydrous magnesium silicate, phase D. Am Mineral, 82: 651–654CrossRef
    Yaxley G M, Brey G P. 2004. Phase relations of carbonate-bearing eclogite assemblages from 2.5 to 5.5 GPa: Implications for petrogenesis of carbonatites. Contrib Mineral Petrol, 146: 606–619CrossRef
    Yogodzinski G M, Lees J M, Churikova T G, Dorendorf F, Woerner G, Volynets O N. 2001. Geochemical evidence for the melting of subducting oceanic lithosphere at plate edges. Nature, 409: 500–504CrossRef
    Zack T, John to 2007. An evaluation of reactive fluid flow and trace element mobility in subducting slabs. Chem Geol, 237: 199–216CrossRef
    Zhang J F, Green H W, Bozhilov K, Jin Z M. 2004. Faulting induced by precipitation of water at grain boundaries in hot subducting oceanic crust. Nature, 428: 633–636CrossRef
    Zheng Y F, Fu B, Gong B, Li L. 2003. Stable isotope geochemistry of ultrahigh pressure metamorphic rocks from the Dabie-Sulu orogen in China: Implications for geodynamics and fluid regime. Earth Sci Rev, 62: 105–161CrossRef
    Zheng Y F. 2009. Fluid regime in continental subduction zones: Petrological insights from ultrahigh-pressure metamorphic rocks. J Geol Soc, 166: 763–782CrossRef
    Zheng Y F, Xia Q X, Chen R, Gao X Y. 2011. Partial melting, fluid supercriticality and element mobility in ultrahigh-pressure metamorphic rocks during continental collision. Earth-Sci Rev, 107: 342–374CrossRef
    Zheng Y F. 2012. Metamorphic chemical geodynamics in continental subduction zones. Chem Geol, 328: 5–48CrossRef
    Zheng Y F, Zhao Z F, Chen Y X. 2013. Continental subduction channel processes: Plate interface interaction during continental collision. Chin Sci Bull, 58: 4371–4377CrossRef
    Zheng Y F, Hermann J. 2014. Geochemistry of continental subduction-zone fluids. Earth Planets Space, 66. 93. doi: 10.1186/1880-5981-66–93CrossRef
    Zheng Y F, Chen Y X, Dai L Q, Zhao Z F. 2015. Developing plate tectonics theory from oceanic subduction zones to collisional orogens. Sci China Earth Sci, 58: 1045–1069CrossRef
  • 作者单位:YongFei Zheng (1)
    RenXu Chen (1)
    Zheng Xu (1)
    ShaoBing Zhang (1)

    1. School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, China
  • 刊物主题:Earth Sciences, general;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1869-1897
文摘
The transport of water from subducting crust into the mantle is mainly dictated by the stability of hydrous minerals in subduction zones. The thermal structure of subduction zones is a key to dehydration of the subducting crust at different depths. Oceanic subduction zones show a large variation in the geotherm, but seismicity and arc volcanism are only prominent in cold subduction zones where geothermal gradients are low. In contrast, continental subduction zones have low geothermal gradients, resulting in metamorphism in cold subduction zones and the absence of arc volcanism during subduction. In very cold subduction zone where the geothermal gradient is very low (≤5°C/km), lawsonite may carry water into great depths of ≤300 km. In the hot subduction zone where the geothermal gradient is high (>25°C/km), the subducting crust dehydrates significantly at shallow depths and may partially melt at depths of <80 km to form felsic melts, into which water is highly dissolved. In this case, only a minor amount of water can be transported into great depths. A number of intermediate modes are present between these two end-member dehydration modes, making subduction-zone dehydration various. Low-T/low-P hydrous minerals are not stable in warm subduction zones with increasing subduction depths and thus break down at forearc depths of ≤60–80 km to release large amounts of water. In contrast, the low-T/low-P hydrous minerals are replaced by low-T/high-P hydrous minerals in cold subduction zones with increasing subduction depths, allowing the water to be transported to subarc depths of 80–160 km. In either case, dehydration reactions not only trigger seismicity in the subducting crust but also cause hydration of the mantle wedge. Nevertheless, there are still minor amounts of water to be transported by ultrahigh-pressure hydrous minerals and nominally anhydrous minerals into the deeper mantle. The mantle wedge overlying the subducting slab does not partially melt upon water influx for volcanic arc magmatism, but it is hydrated at first with the lowest temperature at the slab-mantle interface, several hundreds of degree lower than the wet solidus of hydrated peridotites. The hydrated peridotites may undergo partial melting upon heating at a later time. Therefore, the water flux from the subducting crust into the overlying mantle wedge does not trigger the volcanic arc magmatism immediately.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700