Seepage of methane at Jaco Scar, a slide caused by seamount subduction offshore Costa Rica
详细信息    查看全文
  • 作者:Susan Mau ; Gregor Rehder ; Heiko Sahling…
  • 关键词:Submarine slide ; Cold seeps ; Stable carbon isotopes ; Methane ; Seamount subduction ; Costa Rican fore ; arc
  • 刊名:International Journal of Earth Sciences
  • 出版年:2014
  • 出版时间:October 2014
  • 年:2014
  • 卷:103
  • 期:7
  • 页码:1801-1815
  • 全文大小:3,343 KB
  • 参考文献:1. Badan-Dagon A (1998) Coastal circulation from the Galapagos to the Gulf of California. In: Robinson AR, Brink KH (eds) The sea, vol 11: the global coastal ocean—regional studies and syntheses. Wiley, Hoboken, NJ, pp 315-43
    2. Ballance PF, Scholl DW, Vallier TL, Herzer RH (1989) Subduction of a late cretaceous seamount of the Loisville Ridge at the Tonga Trench: a model of normal and accelerated tectonic erosion. Tectonics 8:953-62 CrossRef
    3. Barker JF, Fritz P (1981) Carbon isotope fractionation during microbial methane oxidation. Nature 293:289-91 CrossRef
    4. Bernard BB, Brooks JM, Sackett WM (1977) A geochemical model for the characterization of hydrocarbon gas sources in marine sediments. In: Proceedings of offshore technology conference, pp 435-38
    5. Bohrmann G, Jung C, Heeschen K, Weinrebe W, Baranov B, Cailleau B, Heath R, Hühnerbach V, Hort M, Masson D, Schaffer I (2002) Widespread fluid expulsion along the seafloor of Costa Rica convergent margin. Terra Nova 14:69-9 CrossRef
    6. Brueckmann W, Rhein M, Rehder G, Bialas J, Kopf A (2009) SUBFLUX, Cruise No. 66, August 12–December 22, 2005. METEOR-Berichte 09-2. Universitaet Hamburg, Hamburg
    7. Cita MB, Woodside JM, Ivanov MK, Kidd RB, Limonov AF, Scientific Staff of Cruise TTR3-Leg2 (1995) Fluid venting from a mud volcano in the Mediterranean Ridge diapiric belt. Terra Nova 7:453-58 CrossRef
    8. Clark J, Washburn L, Hornafius JS, Luyendyk BP (2000) Dissolved hydrocarbon flux from natural marine seeps to the southern California Bight. J Geophys Res 105:11509-1522 CrossRef
    9. Coleman DD, Risatti JB, Schoell M (1981) Fractionation of carbon and hydrogen isotopes by methane-oxidizing bacteria. Geochim Cosmochim Acta 45:1033-037 CrossRef
    10. Collot J-Y, Fisher MA (1989) Formation of forearc basins by collision between seamounts and accretionary wedges: an example from the New Hebrides subduction zone. Geology 17:930-33 CrossRef
    11. Cranston RE, Ginsburg GD, Soloviev VA, Lorenson TD (1994) Gas venting and hydrate deposits in the Okhotsk Sea. Bull Geol Soc Den 41:80-5
    12. Damm E, Budeus G (2003) Fate of vent-derived methane in seawater above the H?kon Mosby mud volcano (Norwegian Sea). Mar Chem 82:1-1 CrossRef
    13. Dia AN, Aquilina L, Boulègue J, Bourgois J, Suess E, Torres M (1993) Origin of fluids and related barite deposits at the vent sites along the Peru convergent margin. Geology 21:1099-102 CrossRef
    14. Etnoyer PJ, Wood J, Shirley TC (2010) How large is the seamount biome? Oceanography 23:206-09 CrossRef
    15. Faber E, Berner U, Gerling P, Hollerbach A, Stahl WJ, Schroeder HG (1996) Isotopic tracing of methane in water and exchange with the atmosphere. Energy Convers Manag 37:1193-198 CrossRef
    16. Faure G (1986) Principles of isotope geology. Wiley, New York
    17. Faure K, Greinert J, Schneider von Deimling J, McGinnis DF, Kipfer R, Linke P (2010) Methane seepage along the Hikurangi margin of New Zealand: geochemical and physical data from the water column, sea surface and atmosphere. Mar Geol 272:170-88 CrossRef
    18. Felden J, Wenzh?fer F, Feseker T, Boetius A (2010) Transport and consumption of oxygen and methane in different habitats of the H?kon Mosby mud volcano (HMMV). Limnol Oceanogr 55:2366-380 CrossRef
    19. Fisher CR (1990) Chemoautotrophic and methanotrophic symbioses in marine invertebrates. Aquat Sci 2:399-36
    20. Ginsburg GD, Milkov AV, Soloviev VA, Egorov AV, Cherkashev GA, Vogt PR, Crane K, Lorenson TD, Khutorskoy MD (1999) Gas hydrate accumulation at the H?kon Mosby mud volcano. Geo-Mar Lett 19:57-7 CrossRef
    21. Grant NJ, Whiticar MJ (2002) Stable carbon isotopic evidence for methane oxidation in plumes above Hydrate Ridge, Cascadia Oregon Margin. Global Biogeochem Cycles 16(4):71-1-1-13
    22. Grasshoff K, Ehrhardt M, Kremling K (1997) Methods of seawater analysis. Verlag Chemie, Gulf Publishing, Houston
    23. Haese RR, Meile C, van Cappellen P, de Lange GJ (2003) Carbon geochemistry of cold seeps: methane fluxes and transformation in sediments from Kazan mud volcano, eastern Mediterranean Sea. Earth Planet Sci Lett 212:361-75 CrossRef
    24. Happell JD, Chanton JP, Showers WS (1994) The influence of methane oxidation on the stable isotopic composition of methane emitted from Florida swamp forests. Geochim Cosmochim Acta 58:4377-388 CrossRef
    25. Harders R, Ranero C, Weinrebe W, Behrmann JH (2011) Submarine slope failure along the convergent continental margin of the Middle American Trench. Geochem Geophys Geosyst 12:1-6 CrossRef
    26. Heeschen KU, Collier RW, de Angelis MA, Linke P, Suess E, Klinkhammer GP (2005) Methane sources, distributions, and fluxes from cold vent sites at Hydrate Ridge, Cascadia Margin. Global Biogeochem Cycles 19:GB2016 CrossRef
    27. Henry P, Le Pichon X, Lallement S, Lance S, Martin JB, Foucher J-P, Fiala-Medioni A, Rostek F, Guilhaumou N, Pranal V, Castrec M (1996) Fluid flow in and around a mud volcano field seaward of the Barbados accretionary wedge: results from Manon cruise. J Geophys Res 101:20297-0323 CrossRef
    28. Hornafius JS, Quigley DC, Luyendyk BP (1999) The world’s most spectacular marine hydrocarbon seeps (Coal Oil Point, Santa Barbara Channel, California): quantification of emission. J Geophys Res 104:20703-0711 CrossRef
    29. Hovland M, Gallagher JW, Clennell MB, Lekvam K (1997) Gas hydrate and free gas volumes in marine sediments: example from the Niger Delta front. Mar Pet Geol 14:245-55 CrossRef
    30. Hühnerbach V, Masson DG, Bohrmann G, Bull JM, Weinrebe W (2005) Deformation and submarine landsliding caused by seamount subduction beneath the Costa Rican continental margin—new insights from high-resolution sidescan sonar data. Geological Society spec. publ, London
    31. Joye SB, Boetius A, Orcutt BN, Montoya JP, Schulz HN, Erickson MJ, Lugo SK (2004) The anaerobic oxidation of methane and sulfate reduction in sediments from Gulf of Mexica cold seeps. Chem Geol 205:219-38 CrossRef
    32. Judd A, Hovland M (2007) Seabed fluid flow. Cambridge University Press, Cambridge CrossRef
    33. Judd AG, Davies G, Wilson J, Holmes R, Baron G, Bryden I (1997) Contributions to atmospheric methane by natural seepages on the U.K. continental shelf. Mar Geol 140:427-55 CrossRef
    34. Judd AG, Hovland M, Dimitrov LI, Garcia Gil S, Jukes V (2002) The geological methane budget at continental margins and its influence on climate change. Geofluids 2:109-26 CrossRef
    35. Keeling CD (1958) The concentration and isotopic abundances of atmospheric carbon dioxide in rural areas. Geochim Cosmochim Acta 13:322-34 CrossRef
    36. Keeling CD (1961) The concentration and abundance of carbon dioxid in rural and marine air. Geochim Cosmochim Acta 24:277-98 CrossRef
    37. King C-Y (1986) Gas geochemistry applied to earthquake prediction: an overview. J Geophys Res 91:12269-2281 CrossRef
    38. Kopf A, Behrmann JH (2000) Extrusion dynamics of mud volcanoes on the Mediterranean Ridge accretionary complex. In: Vendeville B, Mart Y, Vigneresse J-L (eds) From the Artic to the Mediterranean: salt, shale, and igneous diapirs in and around Europe. Journal of the Geological Society, Spec. Publ., London, pp 169-04
    39. Kulm LD, Suess E, Moore JC, Carson B, Lewis BT, Ritger SD, Kadko DC, Thornburg TM, Embley RW, Rugh WD, Massoth GJ, Langseth MG, Cochrane GR, Scamman RL (1986) Oregon subduction zone: venting, fauna, and carbonates. Science 231:561-66 CrossRef
    40. Kvenvolden KA, Lorenson TD, Reeburgh WS (2001) Attention turns to naturally occuring methane seepage. EOS 82:457 CrossRef
    41. Lallemand S, Le Pichon X (1987) Coulomb wedge model applied to the subduction of seamounts in the Japan Trench. Geology 15:1065-069 CrossRef
    42. Lammers S, Suess E (1994) An improved head-space analysis method for methane in seawater. Mar Chem 47:115-25 CrossRef
    43. Lein A, Vogt P, Crane K, Egorov A, Ivanov M (1999) Chemical and isotopic evidence for the nature of the fluid in CH4-containing sediments of the H?kon Mosby mud volcano. Geo-Mar Lett 19:76-3 CrossRef
    44. Levin AL, Orphan VJ, Rouse GW, Rathburn AE, Ussler W III, Cook GS, Goffredi SK, Perez EM, Waren A, Grupe BM, Chadwick G, Strickrott B (2012) A hydrothermal seep on the Costa Rica margin: middle ground in a continuum of reducing ecosystems. Proc R Soc B. doi:10.1098/rspb.2012.0205
    45. Linke P, Suess E, Torres M, Martens V, Rugh WD, Ziebis W, Kulm LD (1994) In situ measurement of fluid flow from cold seeps at active continental margins. Deep Sea Res Pt I 41:721-39 CrossRef
    46. Lückge A, Kastner M, Littke R, Cramer B (2002) Hydrocarbon gas in the Costa Rica subduction zone: primary composition and post-genetic alteration. Org Geochem 33:933-43 CrossRef
    47. Mau S, Sahling H, Rehder G, Suess E, Linke P, Soeding E (2006) Estimates of methane output from mud extrusions at the erosive convergent margin off Costa Rica. Mar Geol 225:129-44 CrossRef
    48. Mau S, Rehder G, Arroyo IG, Gossler J, Suess E (2007) Indications of a link between seismotectonics and CH4 release from seeps off Costa Rica. Geochem Geophys Geosyst 8:Q04003. doi:10.1029/2006GC001326 CrossRef
    49. Niemann H, Duarte J, Hensen C, Omoregie E, Magalhaes VH, Elvert M, Pinheiro LM, Kopf A, Boetius A (2006) Microbial methane turnover at mud volcanoes of the Gulf of Cadiz. Geochim Cosmochim Acta 70:5336-355 CrossRef
    50. Nikolovska A, Sahling H, Bohrmann G (2008) Hydroacoustic methodology for detection, localization, and quantification of gas bubbles rising from the seafloor at gas seeps from the Black Sea. Geochem Geophys Geosyst 9. doi:10.1029/2008GC002118
    51. Olu K, Duperret A, Sibuet M, Foucher J-P, Fiala-Medioni A (1996a) Structure and distribution of cold seep communities along the Peruvian active margin: relationship to geological and fluid patterns. Mar Ecol Prog Ser 132:109-25 CrossRef
    52. Olu K, Sibuet M, Harmegnies F, Foucher J-P, Fiala-Medioni A (1996b) Spatial distribution of diverse cold seep communities living on various diapiric structures of the southern Barbados prism. Prog Oceanogr 38:347-76 CrossRef
    53. Paull CK, Lorenson TD, Borowski WS, Ussler W III, Olsen K, Rodriguez NM (2000) Isotopic composition of CH4, CO2 species, and sedimentary organic matter within samples from the Blake Ridge: Gas source implications. In: Paull CK, Matsumoto R, Wallace PJ, Dillon WP (eds) Proceedings of the ocean drilling program scientific result. Ocean Drilling Program, College Station, TX, pp 67-8
    54. Ranero CR, von Huene R (2000) Subduction erosion along the Middle America convergent margin. Nature 404:748-52 CrossRef
    55. Reeburgh WS (2007) Oceanic methane biogeochemistry. Chem Rev 107:486-13 CrossRef
    56. Reed DL, Silver EA, Tagudin JE, Shipley TH, Vrolijk P (1990) Relations between mud volcanoes, thrust deformation, slope sedimentation, and gas hydrate, offshore north Panama. Mar Pet Geol 7:44-4 CrossRef
    57. Rehder G, Keir RS, Suess E, Rhein M (1999) Methane in the northern Atlantic controlled by microbial oxidation and atmospheric history. Geophys Res Lett 26:587-90 CrossRef
    58. Sahling H, Rickert D, Lee RW, Linke P, Suess E (2002) Macrofaunal community structure and sulfide flux at gas hydrate deposits from the Cascadia convergent margin, NE Pacific. Mar Ecol Prog Ser 231:121-38 CrossRef
    59. Sahling H, Bohrmann G, Spiess V, Bialas J, Breitzke M, Ivanov M, Kasten S, Krastel S, Schneider R (2008a) Pockmarks in the Northern Congo Fan area, SW Africa: complex seafloor features shaped by fluid flow. Mar Geol 249:206-25 CrossRef
    60. Sahling H, Masson DG, Ranero C, Huehnerbach V, Weinrebe W, Klaucke I, Buerk D, Brueckmann W, Suess E (2008b) Fluid seepage at the continental margin offshore Costa Rica and southern Nicaragua. Geochem Geophys Geosyst 9:1-2 CrossRef
    61. Sahling H, Bohrmann G, Artemov YG, Bahr A, Bruening M, Klapp SA, Klaucke I, Kozlova E, Nikolovska A, Pape T, Reitz A, Wallmann K (2009) Vodyanitskii mud volcano, Sorokin trough, Black Sea: geological characterization and quantification of gas bubble streams. Mar Pet Geol 26:1799-811 CrossRef
    62. Sauter EJ, Muyakshin SI, Charlou J-L, Schlüter M, Boetius A, Jerosch K, Damm E, Foucher J-P, Klages M (2006) Methane discharge from a deep-sea submarine mud volcano into the upper water column by gas hydrate-coated methane bubbles. Earth Planet Sci Lett 243:354-65 CrossRef
    63. Schleicher T (2006) Bestimmung von ventspezifischen Faunenvergesellschaftungen am mittelamerikanischen Kontinentalrand mit Hilfe quantitativer Videoauswertung. Diploma thesis, Kiel
    64. Schmale O, Beaubien SE, Rehder G, Greinert J, Lombardi S (2010) Gas seepage in the Dnepr paleo-delta area (NW-Black Sea) and its regional impact on the water column methane cycle. J Mar Syst 80:90-00 CrossRef
    65. Schneider von Deimling J, Rehder G, Greinert J, McGinnis DF, Boetius A, Linke P (2011) Quantification of seep-related methane gas emissions at Tommeliten, North Sea. Cont Shelf Res 31:876-78
    66. Sibuet M, Olu K (1998) Biogeography, biodiversity and fluid dependence of deep-sea cold-seep communities at active and passive margins. Deep Sea Res Pt II 45:517-67 CrossRef
    67. Soeding E, Wallmann K, Suess E, Flueh E (2003) RV METEOR Cruise Report M54/2+3 Fluids and Subduction Costa Rica 2002, Kiel
    68. Staudigel H, Clague DA (2010) The geological history of deep-sea volcanoes. Oceanography 23:58-1 CrossRef
    69. Suess E, Bohrmann G, von Huene R, Linke P, Wallmann K, Lammers S, Sahling H, Winckler G, Lutz RA, Orange D (1998) Fluid venting in the eastern Aleutian subduction zone. J Geophys Res 103:2597-614 CrossRef
    70. Tissot BP, Welte DH (1984) Petroleum formation and occurrence. Springer, Heidelberg CrossRef
    71. Torres ME, Bohrmann G, Suess E (1996) Authigenic barites and flux of barium associated with fluid seeps in the Peru subduction zone. Earth Planet Sci Lett 144:469-81 CrossRef
    72. Tsunogai U, Yoshida N, Ishibashi J, Gamo T (2000) Carbon isotopic distribution of methane in deep-sea hydrothermal plume, Myojin Knoll Caldera, Izu-Bonin arc: implications for microbial methane oxidation in the oceans and applications to heat flux estimation. Geochim Cosmochim Acta 64:2439-452 CrossRef
    73. Valentine DL, Blanton DC, Reeburgh WS, Kastner M (2001) Water column methane oxidation adjacent to an area of active hydrate dissociation, Eel River Basin. Geochim Cosmochim Acta 65:2633-640 CrossRef
    74. von Huene R, Ranero CR, Weinrebe W (2000) Quaternary convergent margin tectonics of Costa Rica, segmentation of the Cocos Plate, and Central American volcanism. Tectonics 19:314-34 CrossRef
    75. von Rad U, Berner U, Delisle G, Doose-Rolinski H, Fecher N, Linke P, Lückge A, Roeser HA, Schmaljohann R, Wiedicke M, Party SS (2000) Gas and fluid venting at the Makran accretionary wedge off Pakistan. Geo Mar Lett 20:10-9 CrossRef
    76. Watanabe S, Tsurushima N, Kusakabe M, Tsunogai S (1995) Methane in Izena Cauldron, Okinawa Trough. J Oceanogr 51:239-55 CrossRef
    77. Weinrebe W, Flueh E (2002) RV Sonne, Cruise Report SO 163, Subduction I, Balboa-Caldera-Balboa (March 13–May 21, 2002). GEOMAR Report 106:534
    78. Whiticar MJ (1990) A geochemical perspective of natural gas and atmospheric methane. 14th EAOG Mtg. Paris, 1989. In: Durand B, Behar F (eds) Advances in organic geochemistry, 1989. Organic Geochemistry, pp 531-47
    79. Whiticar MJ (1996) Isotope tracking of microbial methane formation and oxidation. In: Adams DD, Crill PM, Seitzinger SP (eds) Cycling of reduced gases in the hydrosphere. E. Schweizerbart'sche Verlagsbuchhandlung (N?gele u. Obermiller), Stuttgart, pp 39-4
    80. Whiticar MJ (1999) Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chem Geol 161:291-14 CrossRef
    81. Whiticar MJ, Faber E (1986) Methane oxidation in sediment and water column environments—isotope evidence. Org Geochem 10:759-68 CrossRef
    82. Wiedicke M, Sahling H, Delisle G, Faber E, Neben S, Beiersdorf H, Marchig V, Weiss W, von Mirbach N, Afiat A (2002) Characteristics of an active vent in the fore-arc basin of the Sunda Arc, Indonesia. Mar Geol 184:121-41 CrossRef
  • 作者单位:Susan Mau (1) (3)
    Gregor Rehder (1) (4)
    Heiko Sahling (1) (5)
    Tina Schleicher (1) (6)
    Peter Linke (1) (2)

    1. Sonderforschungsbereich 574, University of Kiel, Kiel, Germany
    3. Max-Planck-Institute for Marine Microbiology, Celsiusstr. 1, 28359, Bremen, Germany
    4. Leibniz Institute for Baltic Sea Research Warnemünde, Seestr. 15, 18119, Rostock, Germany
    5. Department of Geosciences, MARUM Center for Marine Environmental Sciences, Klagenfurter Str., 28359, Bremen, Germany
    6. Department of Bioinformatics, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
    2. GEOMAR -Helmholtz Centre for Ocean Research Kiel, Wischhofstr. 1-3, 24148, Kiel, Germany
  • ISSN:1437-3262
文摘
Methane (CH4) concentrations and CH4 stable carbon isotopic composition ( \( \delta^{13} {\text{C}}_{{{\text{CH}}_{4} }} \) ) were investigated in the water column within Jaco Scar. It is one of several scars formed by massive slides resulting from the subduction of seamounts offshore Costa Rica, a process that can open up structural and stratigraphical pathways for migrating CH4. The release of large amounts of CH4 into the adjacent water column was discovered at the outcropping lowermost sedimentary sequence of the hanging wall in the northwest corner of Jaco Scar, where concentrations reached up to 1,500?nmol?L?. There CH4-rich fluids seeping from the sedimentary sequence stimulate both growth and activity of a dense chemosynthetic community. Additional point sources supplying CH4 at lower concentrations were identified in density layers above and below the main plume from light carbon isotope ratios. The injected CH4 is most likely a mixture of microbial and thermogenic CH4 as suggested by \( \delta^{13} {\text{C}}_{{{\text{CH}}_{4} }} \) values between ?0 and ?2?-Vienna Pee Dee Belemnite. This CH4 spreads along isopycnal surfaces throughout the whole area of the scar, and the concentrations decrease due to mixing with ocean water and microbial oxidation. The supply of CH4 appears to be persistent as repeatedly high CH4 concentrations were found within the scar over 6?years. The maximum CH4 concentration and average excess CH4 concentration at Jaco Scar indicate that CH4 seepage from scars might be as significant as seepage from other tectonic structures in the marine realm. Hence, taking into account the global abundance of scars, such structures might constitute a substantial, hitherto unconsidered contribution to natural CH4 sources at the seafloor.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700