Quantification of methane emission from bacterial mat sites at Quepos Slide offshore Costa Rica
详细信息    查看全文
  • 作者:Deniz Karaca ; Tina Schleicher ; Christian Hensen…
  • 关键词:Methane ; Fluid seepage ; Submarine landslide ; Central American margin ; Reactive ; transport modeling ; Bacterial mats
  • 刊名:International Journal of Earth Sciences
  • 出版年:2014
  • 出版时间:October 2014
  • 年:2014
  • 卷:103
  • 期:7
  • 页码:1817-1829
  • 全文大小:8,875 KB
  • 参考文献:1. Aloisi G, Wallmann K, Haese R, Saliège J-F (2004) Chemical, biological and hydrological controls on the 14C content of cold seep carbonate crusts: numerical modeling and implications for convection at cold seeps. Chem Geol 213(4):359-83 CrossRef
    2. Berner RA (1980) Early diagenesis. A theoretical approach. Princeton University Press, New York, p 241
    3. Boetius A, Suess E (2004) Hydrate Ridge: a natural laboratory for the study of microbial life fueled by methane from near-surface gas hydrates. Chem Geol 205:291-10 CrossRef
    4. Boetius A, Ravenschlag K, Schubert CJ, Rickert D, Widdel F, Giesecke A, Amann R, J?rgensen BB, Witte U, Pfannkuche O (2000) A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407:623-26. doi:10.1016/j.chemgeo.2004.07.008 CrossRef
    5. Bohrmann G, Heeschen K, Jung C, Weinrebe W, Baranov B, Cailleau B, Heath R, Hühnerbach V, Hort M, Masson D, Trummer I (2002) Widespread fluid expulsion along the seafloor of the Costa Rica convergent margin. Terra Nova 14:69-9 CrossRef
    6. Boudreau BP (1984) On the equivalence of nonlocal and radial-diffusion models for porewater irrigation. J Mar Res 42:731-35 CrossRef
    7. Boudreau BP (1997) Diagenetic models and their implementation: modelling transport and reactions in aquatic sediments. Springer, Berlin, p 414 CrossRef
    8. Brückmann W, Rhein M, Rehder G, Bialas J, Kopf A (2009) SUBFLUX, Cruise No.66, METEOR-Berichte, 09-2, Universit?t Hamburg, pp 158
    9. de Beer D, Sauter E, Niemann H, Kaul N, Foucher JP, Witte U, Schlueter M, Boetius A (2006) In situ fluxes and zonation of microbial activity in surface sediments of the Hakon Mosby Mud Volcano. Limnol Oceanogr 51(3):1315-331 CrossRef
    10. Dimitrov LI (2002) Mud volcanoes—the most important pathway for degassing deeply buried sediments. Earth Sci Rev 59:49-6 CrossRef
    11. Etiope G (2004) New directions: GEM—geologic emissions of methane, the missing source in the atmospheric methane budget. Atmos Environ 38(19):3099-100 CrossRef
    12. Etiope G, Klusman RW (2002) Geologic emissions of methane to the atmosphere. Chemosphere 49(8):777-89 CrossRef
    13. Etiope G, Milkov AV (2004) A new estimate of global methane flux from onshore and shallow submarine mud volcanoes to the atmosphere. Environ Geol 46(8):997-002 CrossRef
    14. Feseker T, Foucher JP, Harmegnies F (2008) Fluid flow or mud eruptions? Sediment temperature distributions on Hakon Mosby mud volcano, SW Barents Sea slope. Mar Geol 247(3-):194-07 CrossRef
    15. Flüh ER, Suess E, S?ding E (2004) Cruise Report SO1731 and SO173/3+4; Subduction II GEOMAR-Report, 115. GEOMAR, Kiel, p 491
    16. Füri E, Hilton DR, Tryon MD, Brown KM, McMurtry GM, Bruckmann W, Wheat CG (2010) Carbon release from submarine seeps at the Costa Rica fore arc: implications for the volatile cycle at the Central America convergent margin. Geochem Geophy Geosyst 11:Q04s21. doi:10.1029/2009gc002810
    17. Ginsburg GD, Milkov AV, Soloviev VA, Egorov AV, Cherkashev GA, Vogt PR, Crane K, Lorenson TD, Khutorskoy MD (1999) Gas hydrate accumulation at the Haakon Mosby Mud Volcano. Geo-Mar Lett 19:57-7 CrossRef
    18. Greinert J, McGinnis DF, Naudts L, Linke P, De Batist M (2010) Atmospheric methane flux from bubbling seeps: spatially extrapolated quantification from a Black Sea shelf area. J Geophys Res 115:C01002. doi:10.1029/2009JC005381
    19. Grubbs FE (1950) Sample criteria for testing outlying observations. Ann Math Stat 21:27-8 CrossRef
    20. Gubsch S (2010) Detektion und Quantifizierung von subaquatischen Porenwasserfreisetzungen geringer Intensit?ten. Shaker Verlag, Reihe Umweltwissenschaft Ph.D Dissertation, Universit?t Hamburg-Harburg, pp 174
    21. Haese RR, Meile C, Van Cappellen P, De Lange GJ (2003) Carbon geochemistry of cold seeps: methane fluxes and transformation in sediments from Kazan mud volcano, eastern Mediterranean Sea. Earth Planet Sci Lett 212:361-75 CrossRef
    22. Haese R, Hensen C, De Lange GJ (2006) Pore water geochemistry of eastern Mediterranean mud volcanoes: implications for fluid transport and fluid origin. Mar Geol 225:191-08 CrossRef
    23. Henry P, Foucher JP, Lepichon X, Sibuet M, Kobayashi K, Tarits P, Chamotrooke N, Furuta T, Schultheiss P (1992) Interpretation of temperature-measurements from the Kaiko-Nankai Cruise—modeling of fluid-flow in clam colonies. Earth Planet Sci Lett 109(3-):355-71 CrossRef
    24. Henry P, Le Pichon X, Lallemant S, Lance S, Martin JB, Foucher J-P, Fiala-Médioni A, Rostek F, Guilhaumou N, Pranal V, Castrec M (1996) Fluid flow in and around a mud volcano field seaward of the Barbados accretionary wedge: results from Manon cruise. J. Geophys Res 101(B9):20297-20323
    25. Hensen C, Wallmann K (2004) Methane fluxes and gas hydrate reservoirs in slope sediments along Costa Rica continental margin. EGU 1st General Assembly, Nice, France, EGU04-A-05859
    26. Hensen C, Wallmann K, Schmidt M, Ranero CR, Suess E (2004) Fluid expulsion related to mud extrusion off Costa Rica—a window to the subducting slab. Geology 32:201-04
    27. Hensen C, Nuzzo M, Hornibrook E, Pinheiro LM, Bock B, Magalh?es VH , Brückmann W (2007) Sources of mud volcano fluids in the Gulf of Cadiz—indications for hydrothermal imprint. Geochim Cosmochim Acta 71:1232-248
    28. Hovland M, Judd AG, Burke JRA (1993) The global flux of methane from shallow submarine sediments. Chemosphere 26(Nos. 1-):559-78
    29. Hovland M, Svensen H, Forsberg CF, Johansen H, Fichler C, Fossa JH, Jonsson R, Rueslatten H (2005) Complex pockmarks with carbonate-ridges off mid-Norway: products of sediment degassing. Mar Geol 218:191-06 CrossRef
    30. Imhoff JF, Sahling H, Suling J, Kath T (2003) 16S rDNA-based phylogeny of sulphur-oxidising bacterial endosymbionts in marine bivalves from cold-seep habitats. Mar Ecol Progress Ser 249:39-1 CrossRef
    31. Judd AG (2004) Natural seabed gas seeps as sources of atmospheric methane. Environ Geol 46(8):988-96 CrossRef
    32. Karaca D (2011) Quantification of methane fluxes and authigenic carbonate formation at cold seeps along the continental margin offshore Costa Rica: a numerical modeling approach. Ph.D. Thesis, University of Kiel, Kiel, pp 117
    33. Karaca D, Hensen C, Wallmann K (2010) Controls on authigenic carbonate precipitation at cold seeps along the convergent margin off Costa Rica. Geochemistry Geophysics Geosystems 11(Q08S27). doi:10.1029/2010GC003062
    34. Kessler JD, Reeburgh WS, Southon J, Seifert R, Michaelis W, Tyler SC (2006) Basin-wide estimates of the input of methane from seeps and clathrates to the Black Sea. Earth Planet Sci Lett 243(3-):366-75 CrossRef
    35. Kimura G, Silver E, Blum P, a.c. participants (1997) Proceedings of the Ocean Drilling Program, Initial Reports, vol 170. Ocean Drilling Program, College Station, TX, pp 458
    36. Klaucke I, Masson DG, Petersen CJ, Weinrebe W, Ranero CR (2008) Multifrequency geoacoustic imaging of fluid escape structures offshore Costa Rica: implications for the quantification of seep processes. Geochem Geophys Geosyst 9:Q04010. doi:10.1029/2007gc001708 CrossRef
    37. Kopf A (2002) Significance of mud volcanisms. Rev Geophys 40(2):1-2 CrossRef
    38. Kvenvolden KA, Rogers BW (2005) Gaia’s breath—global methane exhalations. Mar Pet Geol 22(4):579-90 CrossRef
    39. Lichtschlag A, Felden J, Wenzhofer F, Schubotz F, Ertefai TF, Boetius A, de Beer D (2010) Methane and sulfide fluxes in permanent anoxia: in situ studies at the Dvurechenskii mud volcano (Sorokin Trough, Black Sea). Geochim Cosmochim Acta 74(17):5002-018 CrossRef
    40. Linke P, Wallmann K, Suess E, Hensen C, Rehder G (2005) In-situ benthic fluxes from an intermittently active mud volcano at the Costa Rica convergent margin. Earth Planet Sci Lett 235:79-5 CrossRef
    41. Linke P, Sommer S, Rovelli L, McGinnis DF (2010) Physical limitations of dissolved methane fluxes: the role of bottom-boundary layer processes. Mar Geol 272(1-):209-22 CrossRef
    42. Luff R, Wallmann K (2003) Fluid flow, methane fluxes, carbonate precipitation and biogeochemical turnover in gas hydrate-bearing sediments at Hydrate Ridge, Cascadia Margin: numerical modeling and mass balances. Geochim Cosmochim Acta 67(18):3403-421 CrossRef
    43. Luff R, Wallmann K, Grandel S, Schlüter M (2000) Numerical modelling of benthic processes in the deep Arabian Sea. Deep Sea Res II 47(14):3039-072 CrossRef
    44. Luyendyk B, Kennett J, Clark JF (2005) Hypothesis for increased atmospheric methane input from hydrocarbon seeps on exposed continental shelves during glacial low sea level. Mar Pet Geol 22(4):591-96 CrossRef
    45. Mau S, Sahling H, Rehder G, Suess E, Linke P, Soeding E (2006) Estimates of methane output from mud extrusions at the erosive convergent margin off Costa Rica. Mar Geol 225:129-44 CrossRef
    46. Niemann H, Losekann T, de Beer D, Elvert M, Nadalig T, Knittel K, Amann R, Sauter EJ, Schluter M, Klages M, Foucher JP, Boetius A (2006) Novel microbial communities of the Haakon Mosby mud volcano and their role as a methane sink. Nature 443(7113):854-58 CrossRef
    47. Ranero CR, Von Huene R (2000) Subduction erosion along the Middle America convergent margin. Nature 404:748-52 CrossRef
    48. Ranero CR, Grevemeyer I, Sahling H, Barckhausen U, Hensen C, Wallmann K, Weinrebe W, Vannucchi P, von Huene R, McIntosh K (2008) Hydrogeological system of erosional convergent margins and its influence on tectonics and interplate seismogenesis. Geochem Geophys Geosyst 9(3):Q03S04. doi:10.1029/2007GC001679
    49. Reeburgh WS (2007) Oceanic methane biogeochemistry. Chem Rev 107(2):486-13 CrossRef
    50. Sahling H, Masson DG, Ranero CR, Hühnerbach V, Weinrebe W, Klaucke I, Bürk D, Brückmann W, Suess E (2008) Fluid seepage at the continental margin offshore Costa Rica and southern Nicaragua. Geochem Geophys Geosyst 9:Q05S05. doi:10.1029/2008GC001978
    51. Schleicher T (2006) Bestimmung von ventspezifischen Faunenvergesellschaftungen am mittelamerikanischen Kontinentalrand mit Hilfe quantitativer Videoauswertung. Diploma Thesis University of Kiel, Kiel, p 68
    52. Schmidt M, Hensen C, M?rz T, Müller C, Grevemeyer I, Wallmann K, Mau S, Kaul N (2005) Methane hydrate accumulation in “Mound 11-mud volcano, Costa Rica forearc. Mar Geol 216:83-00
    53. Schneider von Deimling J, Rehder G, Greinert J, McGinnnis DF, Boetius A, Linke P (2011) Quantification of seep-related methane gas emissions at Tommeliten, North Sea. Cont Shelf Res 31:867-78 CrossRef
    54. Solomon EA, Kastner M, Jannasch H, Robertson G, Weinstein Y (2008) Dynamic fluid flow and chemical fluxes associated with a seafloor gas hydrate deposit on the northern Gulf of Mexico slope. Earth Planet Sci Lett 270(1-):95-05 CrossRef
    55. Sommer S, Pfannkuche O, Linke P, Luff R, Greinert J, Drews M, Gubsch S, Pieper M, Poser M, Viergutz T (2006) Efficiency of the benthic filter: biological control of the emission of dissolved methane from sediments containing shallow gas hydrates at Hydrate Ridge. Global Biogeochem Cycles 20(2):Gb2019. doi:10.1029/2004gb002389
    56. Sommer S, Linke P, Pfannkuche O, Schleicher T, von Deimling JS, Reitz A, Haeckel M, Flogel S, Hensen C (2009) Seabed methane emissions and the habitat of frenulate tubeworms on the Captain Arutyunov mud volcano (Gulf of Cadiz). Mar Ecol Progress Ser 382:69-6 CrossRef
    57. Tishchenko P, Hensen C, Wallmann K, Wong CS (2005) Calculation of the stability and solubility of methane hydrate in seawater. Chem Geol 219(1-):37-2 CrossRef
    58. Torres ME, McManus J, Hammond DE, de Angelis MA, Heeschen KU, Colbert SL, Tryon MD, Brown KM, Suess E (2002) Fluid and chemical fluxes in and out of sediments hosting methane hydrate deposits on Hydrate Ridge, OR, I: hydrological provinces. Earth Planet Sci Lett 201(3-):525-40 CrossRef
    59. Treude T, Boetius A, Knittel K, Wallmann K, J?rgensen BB (2003) Anaerobic oxidation of methane above gas hydrates. Mar Ecol Prog Ser 264:1-4 CrossRef
    60. Tryon MD, Wheat CG, Hilton DR (2010) Fluid sources and pathways of the Costa Rica erosional convergent margin. Geochemistry Geophysics Geosystems 11:Q04s22. doi:10.1029/2009gc002818
    61. Vannucchi P, Ranero CR, Galeotti S, Straub SM, Scholl DW, McDougall-Ried K (2003) Fast rates of subducting erosion along the Costa Rica Pacific margin: implications for nonsteady rates of crustal recycling at subduction zones. J Geophys Res 108(No. B11). doi:10.1029/2002JB002207
    62. von Huene R, Ranero CR, Weinrebe W, Hinz K (2000) Quaternary convergent margin tectonics of Costa Rica, segmentation of the Cocos Plate, and Central American volcanism. Tectonics 19(2):314-34 CrossRef
    63. von Huene R, Ranero CR, Watts P (2004) Tsunamigenic slope failure along the Middle America Trench in two tectonic settings. Mar Geol 203(3-):303-17 CrossRef
    64. Wallmann K, Linke P, Suess E, Bohrmann G, Sahling H, Schlüter M, D?hlmann A, Lammers S, Greinert J, Mirbach Nv (1997) Quantifying fluid flow, solute mixing, and biogeochemical turnover at cold vents of the eastern Aleutian subduction zone. Geochim Cosmochim Acta 61(24):5209-219 CrossRef
    65. Wallmann K, Drews M, Aloisi G, Bohrmann G (2006) Fluid expulsion from the Dvurechenskii mud volcano (Black Sea): part II. Methane fluxes and new estimates of global methane discharge into the ocean via submarine mud volcanism. Earth Planet Sci Lett 248:544-59
  • 作者单位:Deniz Karaca (1)
    Tina Schleicher (2)
    Christian Hensen (1) (3)
    Peter Linke (1) (3)
    Klaus Wallmann (1) (3)

    1. Collaborative Research Center (SFB) 574, GEOMAR, Helmholz Centre for Ocean Research Kiel, Wischhofstra?e 1-3, 24148, Kiel, Germany
    2. Department of Bioinformatics, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
    3. Helmholtz Centre for Ocean Research Kiel (GEOMAR), Wischhofstra?e 1-3, 24148, Kiel, Germany
  • ISSN:1437-3262
文摘
Seafloor methane emission from the Quepos Slide on the submarine segment of the Costa Rica fore-arc margin was estimated by extrapolating flux measurements from individual seeps to the total area covered by bacterial mats. This approach is based on the combination of detailed mapping to determine the abundance of seeps and the application of a numerical model to estimate the amount of benthic methane fluxes. Model results suggest that the majority of the studied seeps transport rather limited amount of methane (on average: ~177?μmol?cm??a?) into the water column due to moderate upward advection, allowing for intense anaerobic oxidation of methane (AOM; on average: 53?% of the methane flux is consumed). Depth-integrated AOM rates (56-,538?μmol CH4 cm??a?) are comparable with values reported from other active seep sites. The overall amount of dissolved methane released into the water column from the entire area covered by bacterial mats on the Quepos Slide is estimated to be about 0.28?×?106?mol?a?. This conservative estimate which relies on rather accurate determinations of seafloor methane fluxes emphasizes the potential importance of submarine slides as sites of natural methane seepage; however, at present the global extent of methane seepage from submarine slides is largely unknown.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700