Spontaneous expression of magnetic compass orientation in an epigeic rodent: the bank vole, Clethrionomys glareolus
详细信息    查看全文
  • 作者:Ludmila Oliveriusová (1)
    Pavel Němec (2)
    Zuzana Pavelková (2)
    Franti?ek Sedlá?ek (1)
  • 关键词:Spatial orientation ; Magnetoreception ; Magnetite ; based mechanism ; Radical pair ; based mechanism ; Bank vole
  • 刊名:Naturwissenschaften
  • 出版年:2014
  • 出版时间:July 2014
  • 年:2014
  • 卷:101
  • 期:7
  • 页码:557-563
  • 全文大小:306 KB
  • 参考文献:1. August PV, Ayvazian SG, Anderson JGT (1989) Magnetic orientation in a small mammal, / Peromyscus leucopus. J Mammal 70(1):1- CrossRef
    2. Batschelet E (1981) Circular statistics in biology. Academic, London
    3. Begall S, ?erveny J, Neef J, Vojtech O, Burda H (2008) Magnetic alignment in grazing and resting cattle and deer. Proc Natl Acad Sci U S A 105(36):13451-3455. doi:10.1073/pnas.0803650105 CrossRef
    4. Begall S, Burda H, ?erveny J, Gerter O, Neef-Weisse J, Němec P (2011) Further support for the alignment of cattle along magnetic field lines: reply to Hert et al. J Comp Physiol A 197(12):1127-133. doi:10.1007/s00359-011-0674-1 CrossRef
    5. Begall S, Malkemper EP, ?erveny J, Němec P, Burda H (2013) Magnetic alignment in mammals and other animals. Mammal Biol 78(1):10-0. doi:10.1016/j.mambio.2012.05.005
    6. Betancur C, Dell'Omo G, Alleva E (1994) Magnetic field effects on stress-induced analgesia in mice: modulation by light. Neurosci Lett 182(2):147-50. doi:10.1016/0304-3940(94)90784-6 CrossRef
    7. Burda H, Marhold S, Westenberger T, Wiltschko R, Wiltschko W (1990) Magnetic compass orientation in the subterranean rodent / Cryptomys hottentotus (Bathyergidae). Experientia 46(5):528-30. doi:10.1007/bf01954256 CrossRef
    8. Burda H, Begall S, ?erveny J, Neef J, Němec P (2009) Extremely low-frequency electromagnetic fields disrupt magnetic alignment of ruminants. Proc Natl Acad Sci U S A 106(14):5708-713. doi:10.1073/pnas.0811194106 CrossRef
    9. Burger T, Lucova M, Moritz RE, Oelschlager HHA, Druga R, Burda H, Wiltschko W, Wiltschko R, Němec P (2010) Changing and shielded magnetic fields suppress c-Fos expression in the navigation circuit: input from the magnetosensory system contributes to the internal representation of space in a subterranean rodent. J R Soc Interface 7(50):1275-292. doi:10.1098/rsif.2009.0551 CrossRef
    10. ?erveny J, Begall S, Koubek P, Nováková P, Burda H (2011) Directional preference may enhance hunting accuracy in foraging foxes. Biol Lett 7(3):355-57. doi:10.1098/rsbl.2010.1145 CrossRef
    11. Deutschlander ME, Freake MJ, Borland SC, Phillips JB, Madden RC, Anderson LE, Wilson BW (2003) Learned magnetic compass orientation by the Siberian hamster, / Phodopus sungorus. Anim Behav 65:779-86. doi:10.1006/anbe.2003.2111 CrossRef
    12. Follmann DA, Proschan MA (1999) A simple permutation—type method for testing circular uniformity with correlated angular measurements. Biometrics 55(3):782-91 CrossRef
    13. Hart V, Nováková P, Malkemper EP, Begall S, Hanzal V, Je?ek M, Ku?ta T, Němcová V, Adámková J, Benediktová K, ?erveny J, Burda H (2013) Dogs are sensitive to small variations of the Earth’s magnetic field. Front Zool 10(1):1-2. doi:10.1186/1742-9994-10-80 CrossRef
    14. Holland RA, Borissov I, Siemers BM (2010) A nocturnal mammal, the greater mouse-eared bat, calibrates a magnetic compass by the sun. Proc Natl Acad Sci U S A 107(15):6941-945. doi:10.1073/pnas.0912477107 CrossRef
    15. Holland RA, Helm B (2013) A strong magnetic pulse affects the precision of departure direction of naturally migrating adult but not juvenile birds. J R Soc Interface 10 (81)
    16. Holland RA, Kirschvink JL, Doak TG, Wikelski M (2008) Bats use magnetite to detect the Earth’s magnetic field. PLoS One 3(2):e1676. doi:10.1371/journal.pone.0001676
    17. Holland RA, Thorup K, Vonhof MJ, Cochran WW, Wikelski M (2006) Navigation: bat orientation using Earth’s magnetic field. Nature 444(7120):702. doi:10.1038/444702a CrossRef
    18. Johnsen S, Mattern E, Ritz T (2007) Light-dependent magnetoreception: quantum catches and opponency mechanisms of possible photosensitive molecules. J Exp Biol 210(18):3171-178. doi:10.1242/jeb.007567 CrossRef
    19. Kimchi T, Terkel J (2001) Magnetic compass orientation in the blind mole rat / Spalax ehrenbergi. J Exp Biol 204(4):751-58
    20. Kirschvink JL (1982) Birds, bees and magnetism: a new look at the old problem of magnetoreception. Trends Neurosci 5:160-67. doi:10.1016/0166-2236(82)90090-X CrossRef
    21. Kirschvink JL, Walker MM, Diebel CE (2001) Magnetite-based magnetoreception. Curr Opin Neurobiol 11(4):462-67. doi:10.1016/s0959-4388(00)00235-x CrossRef
    22. Madden R, Phillips J (1987) An attempt to demonstrate magnetic compass orientation in two species of mammals. Learn Behav 15(2):130-34. doi:10.3758/bf03204958 CrossRef
    23. Marhold S, Burda H, Kreilos I, Wiltschko W (1997a) Magnetic orientation in common mole-rats from Zambia. In: Orientation and navigation—birds, humans and other animals. Royal Institute of Navigation, Oxford. Paper 5
    24. Marhold S, Wiltschko W, Burda H (1997b) A magnetic polarity compass for direction finding in a subterranean mammal. Naturwissenschaften 84(9):421-23. doi:10.1007/s001140050422 CrossRef
    25. Mather JG, Baker RR (1981) Magnetic sense of direction in woodmice for route-based navigation. Nature 291(5811):152-55 CrossRef
    26. Merritt R, Purcell C, Stroink G (1983) Uniform magnetic field produced by three, four, and five square coils. Rev Sci Instrum 54(7):879-82. doi:10.1063/1.1137480 CrossRef
    27. Muheim R, Edgar NM, Sloan KA, Phillips JB (2006) Magnetic compass orientation in C57BL/6J mice. Learn Behav 34(4):366-73. doi:10.3758/BF03193201 CrossRef
    28. Němec P, Altmann J, Marhold S, Burda H, Oelschlager HHA (2001) Neuroanatomy of magnetoreception: the superior colliculus involved in magnetic orientation in a mammal. Science 294(5541):366-68. doi:10.1126/science.1063351 CrossRef
    29. Němec P, Burda H, Oelschlager HHA (2005) Towards the neural basis of magnetoreception: a neuroanatomical approach. Naturwissenschaften 92(4):151-57. doi:10.1007/s00114-005-0612-6 CrossRef
    30. Němec P, Cvekova P, Burda H, Benada O, Peichl L (2007) Visual systems and the role of vision in subterranean rodents: Diversity of retinal properties and visual system designs. In: Begall S, Burda H, Schleich CE (eds) Subterranean rodents: News from underground. Springer, Heidelberg, pp 129-60. doi:10.1007/978-3-540-69276-8_11 CrossRef
    31. Oliveriusová L, Němec P, Králová Z, Sedlá?ek F (2012) Magnetic compass orientation in two strictly subterranean rodents: learned or species-specific innate directional preference? J Exp Biol 215(20):3649-654. doi:10.1242/jeb.069625 CrossRef
    32. Painter MS, Dommer DH, Altizer WW, Muheim R, Phillips JB (2013) Spontaneous magnetic orientation in larval Drosophila shares properties with learned magnetic compass responses in adult flies and mice. J Exp Biol 216(7):1307-316. doi:10.1242/jeb.077404 CrossRef
    33. Phillips JB, Muheim R, Jorge PE (2010) A behavioral perspective on the biophysics of the light-dependent magnetic compass: a link between directional and spatial perception? J Exp Biol 213(19):3247-255. doi:10.1242/jeb.020792 CrossRef
    34. Phillips JB, Youmans PW, Muheim R, Sloan KA, Landler L, Painter MS, Anderson CR (2013) Rapid learning of magnetic compass direction by C57BL/6 Mice in a 4-armed ‘plus-water maze. PLoS One 8(8):e73112. doi:10.1371/journal.pone.0073112 CrossRef
    35. Prato FS, Desjardins-Holmes D, Keenliside LD, McKay JC, Robertson JA, Thomas AW (2009) Light alters nociceptive effects of magnetic field shielding in mice: intensity and wavelength considerations. J R Soc Interface 6(30):17-8. doi:10.1098/rsif.2008.0156 CrossRef
    36. Prato FS, Desjardins-Holmes D, Keenliside LD, DeMoor JM, Robertson JA, Thomas AW (2013) Magnetoreception in laboratory mice: sensitivity to extremely low-frequency fields exceeds 33 nT at 30 Hz. J R Soc Interface 10(81):20121046. doi:10.1098/rsif.2012.1046 CrossRef
    37. Ritz T, Adem S, Schulten K (2000) A model for photoreceptor-based magnetoreception in birds. Biophys J 78(2):707-18. doi:10.1016/S0006-3495(00)76629-X CrossRef
    38. Ritz T, Thalau P, Phillips JB, Wiltschko R, Wiltschko W (2004) Resonance effects indicate a radical-pair mechanism for avian magnetic compass. Nature 429(6988):177-80. doi:10.1038/nature02534 CrossRef
    39. Ritz T, Wiltschko R, Hore PJ, Rodgers CT, Stapput K, Thalau P, Timmel CR, Wiltschko W (2009) Magnetic compass of birds is based on a molecule with optimal directional sensitivity. Biophys J 96(8):3451-457. doi:10.1016/j.bpj.2008.11.072 CrossRef
    40. Sauvé JP (1985) Contribution a l’etude des capacites d’orientation a grande distance des petits rongeurs: Analse methodologique de l’orientation initiale des mulots ( / Apodemus sylvaticus) en cage d’orientation. DEA Neurosciences Sciences du comportement Universite d’Aix-Marseille II
    41. Slaby P, Tomanová K, Vácha M (2013) Cattle on pastures do align along the North–South axis, but the alignment depends on herd density. J Comp Physiol A 199(8):695-01. doi:10.1007/s00359-013-0827-5 CrossRef
    42. Thalau P, Ritz T, Burda H, Wegner RE, Wiltschko R (2006) The magnetic compass mechanisms of birds and rodents are based on different physical principles. J R Soc Interface 3(9):583-87. doi:10.1098/rsif.2006.0130 CrossRef
    43. Vácha M, P??ová T, Kví?alová M (2009) Radio frequency magnetic fields disrupt magnetoreception in American cockroach. J Exp Biol 212(21):3473-477. doi:10.1242/jeb.028670 CrossRef
    44. Wang YN, Pan YX, Parsons S, Walker M, Zhang SY (2007) Bats respond to polarity of a magnetic field. Proc R Soc B 274(1627):2901-905. doi:10.1098/rspb.2007.0904 CrossRef
    45. Wegner RE, Begall S, Burda H (2006) Magnetic compass in the cornea: local anaesthesia impairs orientation in a mammal. J Exp Biol 209(23):4747-750. doi:10.1242/jeb.02573 CrossRef
    46. Wiltschko R, Wiltschko W (1995) Magnetic orientation in animals. Springer, New York CrossRef
    47. Wiltschko W, Wiltschko R (2005) Magnetic orientation and magnetoreception in birds and other animals. J Comp Physiol A 191(8):675-93. doi:10.1007/s00359-005-0627-7 CrossRef
    48. Wiltschko W, Munro U, Wiltschko R, Kirschvink JL (2002) Magnetite-based magnetoreception in birds: the effect of a biasing field and a pulse on migratory behaviour. J Exp Biol 205(19):3031-037
    49. Wiltschko R, Stapput K, Thalau P, Wiltschko W (2010) Directional orientation of birds by the magnetic field under different light conditions. J R Soc Interface 7(Suppl 2):S163–S177. doi:10.1098/rsif.2009.0367.focus CrossRef
    50. Winklhofer M, Kirschvink JL (2010) A quantitative assessment of torque-transducer models for magnetoreception. J R Soc Interface 7:S273–S289. doi:10.1098/rsif.2009.0435.focus CrossRef
  • 作者单位:Ludmila Oliveriusová (1)
    Pavel Němec (2)
    Zuzana Pavelková (2)
    Franti?ek Sedlá?ek (1)

    1. Department of Zoology, Faculty of Science, University of South Bohemia, Brani?ovská 31, 370 05, ?eské Budějovice, Czech Republic
    2. Department of Zoology, Faculty of Science, Charles University in Prague, Vini?ná 7, 128 44, Praha 2, Czech Republic
  • ISSN:1432-1904
文摘
Magnetoreception has been convincingly demonstrated in only a few mammalian species. Among rodents, magnetic compass orientation has been documented in four species of subterranean mole rats and two epigeic (i.e. active above ground) species—the Siberian hamster and the C57BL/6J mouse. The mole rats use the magnetic field azimuth to determine compass heading; their directional preference is spontaneous and unimodal, and their magnetic compass is magnetite-mediated. By contrast, the primary component of orientation response is learned in the hamster and the mouse, but both species also exhibit a weak spontaneous bimodal preference in the natural magnetic field. To determine whether the magnetic compass of wild epigeic rodents features the same functional properties as that of laboratory rodents, we investigated magnetic compass orientation in the bank vole Clethrionomys glareolus (Cricetidae, Rodentia). The voles exhibited a robust spontaneous bimodal directional preference, i.e. built nests and slept preferentially along the north-south axis, and deflected their directional preference according to a shift in the direction of magnetic north, clearly indicating that they were deriving directional information from the magnetic field. Thus, bimodal, axially symmetrical directional choice seems to be a common feature shared by epigeic rodents. However, spontaneous directional preference in the bank vole appeared to be more pronounced than that reported in the hamster and the mouse. These findings suggest that bank voles are well suited for future studies investigating the adaptive significance and mechanisms of magnetic orientation in epigeic rodents.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700