Medaka Oct4 is Essential for Pluripotency in Blastula Formation and ES Cell Derivation
详细信息    查看全文
  • 作者:Rong Liu (1)
    Mingyou Li (1) (2)
    Zhendong Li (1)
    Ni Hong (1) (3)
    Hongyan Xu (1) (4)
    Yunhan Hong (1) (2)

    1. Department of Biological Sciences
    ; National University of Singapore ; 14 Science Drive 4 ; Singapore ; 117543 ; Singapore
    2. College of Fisheries and Life Science
    ; Shanghai Ocean University ; 999 Hucheng Huan Road ; Shanghai ; 201306 ; People鈥檚 Republic of China
    3. Genetics of Development and Diseases Branch
    ; National Institute of Diabetes and Digestive and Kidney Diseases ; National Institutes of Health ; 10 Center Drive ; Bethesda ; MD ; 20892 ; USA
    4. Key Laboratory of Tropical & Subtropical fishery Resource application & cultivation
    ; Ministry of Agriculture ; Pearl River Fishery Research Science ; Chinese Academic of Fishery Science ; Guangzhou ; 510380 ; People鈥檚 Republic of China
  • 关键词:ES cell ; Germ cell ; Oct4 ; Pou2 ; Pluripotency
  • 刊名:Stem Cell Reviews and Reports
  • 出版年:2015
  • 出版时间:February 2015
  • 年:2015
  • 卷:11
  • 期:1
  • 页码:11-23
  • 全文大小:11,481 KB
  • 参考文献:1. Scholer, H. R., Balling, R., Hatzopoulos, A. K., Suzuki, N., & Gruss, P. (1989). Octamer binding proteins confer transcriptional activity in early mouse embryogenesis. / The EMBO Journal, 8, 2551鈥?.
    2. Scholer, H. R., Ruppert, S., Suzuki, N., Chowdhury, K., & Gruss, P. (1990). New type of POU domain in germ line-specific protein Oct-4. / Nature, 344, 435鈥?. CrossRef
    3. Okamoto, K., Okazawa, H., Okuda, A., Sakai, M., Muramatsu, M., & Hamada, H. (1990). A novel octamer binding transcription factor is differentially expressed in mouse embryonic cells. / Cell, 60, 461鈥?2. CrossRef
    4. Niwa, H., Miyazaki, J., & Smith, A. G. (2000). Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. / Nature Genetics, 24, 372鈥?. CrossRef
    5. Nichols, J., Zevnik, B., Anastassiadis, K., Niwa, H., Klewe-Nebenius, D., Chambers, I., Scholer, H., & Smith, A. (1998). Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. / Cell, 95, 379鈥?1. CrossRef
    6. Kehler, J., Tolkunova, E., Koschorz, B., Pesce, M., Gentile, L., Boiani, M., Lomeli, H., Nagy, A., McLaughlin, K. J., Scholer, H. R., & Tomilin, A. (2004). Oct4 is required for primordial germ cell survival. / EMBO Reports, 5, 1078鈥?3. CrossRef
    7. Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. / Cell, 126, 663鈥?6. cell.2006.07.024" target="_blank" title="It opens in new window">CrossRef
    8. Takeda, H., Matsuzaki, T., Oki, T., Miyagawa, T., & Amanuma, H. (1994). A novel POU domain gene, zebrafish pou2: expression and roles of two alternatively spliced twin products in early development. / Genes and Development, 8, 45鈥?9. CrossRef
    9. Frankenberg, S., & Renfree, M. B. (2013). On the origin of POU5F1. / BMC Biology, 11, 56. CrossRef
    10. Niwa, H., Sekita, Y., Tsend-Ayush, E., & Grutzner, F. (2008). Platypus Pou5f1 reveals the first steps in the evolution of trophectoderm differentiation and pluripotency in mammals. / Evolution and Development, 10, 671鈥?2. CrossRef
    11. Frankenberg, S., Pask, A., & Renfree, M. B. (2010). The evolution of class V POU domain transcription factors in vertebrates and their characterisation in a marsupial. / Developmental Biology, 337, 162鈥?0. CrossRef
    12. Onichtchouk, D. (2012). Pou5f1/oct4 in pluripotency control: insights from zebrafish. / Genesis, 50, 75鈥?5. CrossRef
    13. Tapia, N., Reinhardt, P., Duemmler, A., Wu, G., Arauzo-Bravo, M. J., Esch, D., Greber, B., Cojocaru, V., Rascon, C. A., Tazaki, A., Kump, K., Voss, R., Tanaka, E. M., & Scholer, H. R. (2012). Reprogramming to pluripotency is an ancient trait of vertebrate Oct4 and Pou2 proteins. / Nature Communications, 3, 1279. CrossRef
    14. Boiani, M., & Scholer, H. R. (2005). Regulatory networks in embryo-derived pluripotent stem cells. / Nature Reviews. Molecular Cell Biology, 6, 872鈥?4. CrossRef
    15. Reim, G., & Brand, M. (2002). Spiel-ohne-grenzen/pou2 mediates regional competence to respond to Fgf8 during zebrafish early neural development. / Development, 129, 917鈥?3.
    16. Lachnit, M., Kur, E., & Driever, W. (2008). Alterations of the cytoskeleton in all three embryonic lineages contribute to the epiboly defect of Pou5f1/Oct4 deficient MZspg zebrafish embryos. / Developmental Biology, 315, 1鈥?7. CrossRef
    17. Reim, G., & Brand, M. (2006). Maternal control of vertebrate dorsoventral axis formation and epiboly by the POU domain protein Spg/Pou2/Oct4. / Development, 133, 2757鈥?0. CrossRef
    18. Lunde, K., Belting, H. G., & Driever, W. (2004). Zebrafish pou5f1/pou2, homolog of mammalian Oct4, functions in the endoderm specification cascade. / Current Biology, 14, 48鈥?5. CrossRef
    19. Hong, Y., & Schartl, M. (1996). Establishment and growth responses of early medakafish (Oryzias latipes) embryonic cells in feeder layer-free cultures. / Molecular Marine Biology and Biotechnology, 5, 93鈥?04.
    20. Hong, Y., Winkler, C., & Schartl, M. (1998). Production of medakafish chimeras from a stable embryonic stem cell line. / Proceedings of the National Academy of Sciences of the United States of America, 95, 3679鈥?4. CrossRef
    21. Hong, Y., Liu, T., Zhao, H., Xu, H., Wang, W., Liu, R., Chen, T., Deng, J., & Gui, J. (2004). Establishment of a normal medakafish spermatogonial cell line capable of sperm production in vitro. / Proceedings of the National Academy of Sciences of the United States of America, 101, 8011鈥?. CrossRef
    22. Yi, M., Hong, N., & Hong, Y. (2009). Generation of medaka fish haploid embryonic stem cells. / Science, 326, 430鈥?. CrossRef
    23. Li Z, M Li, N Hong, M Yi and Y Hong. (2014). Formation and cultivation of medaka primordial germ cells. Cell Tissue Res
    24. Sanchez-Sanchez, A. V., Camp, E., Garcia-Espana, A., Leal-Tassias, A., & Mullor, J. L. (2010). Medaka Oct4 is expressed during early embryo development, and in primordial germ cells and adult gonads. / Developmental Dynamics, 239, 672鈥?. CrossRef
    25. Froschauer, A., Khatun, M. M., Sprott, D., Franz, A., Rieger, C., Pfennig, F., & Gutzeit, H. O. (2013). oct4-EGFP reporter gene expression marks the stem cells in embryonic development and in adult gonads of transgenic medaka. / Molecular Reproduction and Development, 80, 48鈥?8. CrossRef
    26. Hong, Y., Winkler, C., & Schartl, M. (1996). Pluripotency and differentiation of embryonic stem cell lines from the medakafish (Oryzias latipes). / Mechanisms of Development, 60, 33鈥?4. CrossRef
    27. Hong N, S Chen, R Ge, J Song, M Yi and Y Hong. (2012). Interordinal Chimera Formation Between Medaka and Zebrafish for Analyzing Stem Cell Differentiation. Stem Cells Dev
    28. Hong, N., Li, M., Zeng, Z., Yi, M., Deng, J., Gui, J., Winkler, C., Schartl, M., & Hong, Y. (2010). Accessibility of host cell lineages to medaka stem cells depends on genetic background and irradiation of recipient embryos. / Cellular and Molecular Life Sciences, 67, 1189鈥?202. CrossRef
    29. Iwamatsu, T. (2004). Stages of normal development in the medaka Oryzias latipes. / Mechanisms of Development, 121, 605鈥?8. CrossRef
    30. Xu, H., Gui, J., & Hong, Y. (2005). Differential expression of vasa RNA and protein during spermatogenesis and oogenesis in the gibel carp (Carassius auratus gibelio), a bisexually and gynogenetically reproducing vertebrate. / Developmental Dynamics, 233, 872鈥?2. CrossRef
    31. Yan, Y., Hong, N., Chen, T., Li, M., Wang, T., Guan, G., Qiao, Y., Chen, S., Schartl, M., Li, C. M., & Hong, Y. (2013). p53 gene targeting by homologous recombination in fish ES cells. / PLoS ONE, 8, e59400. CrossRef
    32. Li, M., Hong, N., Xu, H., Yi, M., Li, C., Gui, J., & Hong, Y. (2009). Medaka vasa is required for migration but not survival of primordial germ cells. / Mechanisms of Development, 126, 366鈥?1. CrossRef
    33. Xu, H., Li, Z., Li, M., Wang, L., & Hong, Y. (2009). Boule is present in fish and bisexually expressed in adult and embryonic germ cells of medaka. / PLoS ONE, 4, e6097. CrossRef
    34. Xu, H., Li, M., Gui, J., & Hong, Y. (2007). Cloning and expression of medaka dazl during embryogenesis and gametogenesis. / Gene Expression Patterns, 7, 332鈥?. CrossRef
    35. Zhao, H., Hong, N., Lu, W., Zeng, H., Song, J., & Hong, Y. (2012). / Fusion gene vectors allowing for simultaneous drug selection, cell Labeling, and reporter assay in vitro and in vivo. Anal: Chem.
    36. Hong, Y., Chen, S., Gui, J., & Schartl, M. (2004). Retention of the developmental pluripotency in medaka embryonic stem cells after gene transfer and long-term drug selection for gene targeting in fish. / Transgenic Research, 13, 41鈥?0. CrossRef
    37. Li, M., Hong, N., Gui, J., & Hong, Y. (2012). Medaka piwi is Essential for Primordial Germ Cell Migration. / Current Molecular Medicine, 12, 1040鈥?. CrossRef
    38. Hong, Y., & Schartl, M. (1996). Establishment and growth responses of early medaka (Oryzias latipes) embryonic cells in feeder layer-free culture. / Molecular Marine Biology and Biotechnology, 5, 93鈥?04.
    39. Yuan, Y., Li, M., Hong, N., & Hong, Y. (2014). Correlative light and electron microscopic analyses of mitochondrial distribution in blastomeres of early fish embryos. / The FASEB Journal, 28, 577鈥?5. CrossRef
    40. Amores, A., Force, A., Yan, Y. L., Joly, L., Amemiya, C., Fritz, A., Ho, R. K., Langeland, J., Prince, V., Wang, Y. L., Westerfield, M., Ekker, M., & Postlethwait, J. H. (1998). Zebrafish hox clusters and vertebrate genome evolution. / Science, 282, 1711鈥?. CrossRef
    41. Lippok, B., Song, S., & Driever, W. (2014). Pou5f1 protein expression and posttranslational modification during early zebrafish development. / Developmental Dynamics, 243, 468鈥?7. CrossRef
    42. Li, M., Shen, Q., Wong, F. M., Xu, H., Hong, N., Zeng, L., Liu, L., Wei, Q., & Hong, Y. (2011). Germ cell sex prior to meiosis in the rainbow trout. / Protein & Cell, 2, 48鈥?4. CrossRef
    43. Li, M., Shen, Q., Xu, H., Wong, F. M., Cui, J., Li, Z., Hong, N., Wang, L., Zhao, H., Ma, B., & Hong, Y. (2011). Differential conservation and divergence of fertility genes boule and dazl in the rainbow trout. / PLoS ONE, 6, e15910. CrossRef
    44. Millane, R. C., Kanska, J., Duffy, D. J., Seoighe, C., Cunningham, S., Plickert, G., & Frank, U. (2011). Induced stem cell neoplasia in a cnidarian by ectopic expression of a POU domain transcription factor. / Development, 138, 2429鈥?9. CrossRef
    45. Wang, D., Manali, D., Wang, T., Bhat, N., Hong, N., Li, Z., Wang, L., Yan, Y., Liu, R., & Hong, Y. (2011). Identification of pluripotency genes in the fish medaka. / International Journal of Biological Sciences, 7, 440鈥?1. CrossRef
    46. Mohapatra, C., Patra, S. K., Panda, R. P., Mohanta, R., Saha, A., Saha, J. N., Mahapatra, K. D., Jayasankar, P., & Barman, H. K. (2014). / Gene structure and identification of minimal promoter of Pou2 expressed in spermatogonial cells of rohu carp. Mol Biol Rep: Labeo rohita.
    47. Ye, H., Du, H., Chen, X. H., Cao, H., Liu, T., & Li, C. J. (2012). Identification of a pou2 ortholog in Chinese sturgeon, Acipenser sinensis and its expression patterns in tissues, immature individuals and during embryogenesis. / Fish Physiology and Biochemistry, 38, 929鈥?2. CrossRef
    48. Rodda, D. J., Chew, J. L., Lim, L. H., Loh, Y. H., Wang, B., Ng, H. H., & Robson, P. (2005). Transcriptional regulation of nanog by OCT4 and SOX2. / The Journal of Biological Chemistry, 280, 24731鈥?. CrossRef
    49. Chew, J. L., Loh, Y. H., Zhang, W., Chen, X., Tam, W. L., Yeap, L. S., Li, P., Ang, Y. S., Lim, B., Robson, P., & Ng, H. H. (2005). Reciprocal transcriptional regulation of Pou5f1 and Sox2 via the Oct4/Sox2 complex in embryonic stem cells. / Molecular and Cellular Biology, 25, 6031鈥?6. CrossRef
    50. Loh, Y. H., Wu, Q., Chew, J. L., Vega, V. B., Zhang, W., Chen, X., Bourque, G., George, J., Leong, B., Liu, J., Wong, K. Y., Sung, K. W., Lee, C. W., Zhao, X. D., Chiu, K. P., Lipovich, L., Kuznetsov, V. A., Robson, P., Stanton, L. W., Wei, C. L., Ruan, Y., Lim, B., & Ng, H. H. (2006). The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. / Nature Genetics, 38, 431鈥?0. CrossRef
    51. Yeo, J. C., & Ng, H. H. (2013). The transcriptional regulation of pluripotency. / Cell Research, 23, 20鈥?2. CrossRef
    52. Li, M., Zhu, F., & Hong, Y. (2013). Differential evolution of duplicated medakafish mitf genes. / International Journal of Biological Sciences, 9, 496鈥?08. CrossRef
    53. Hong N, M Schartl and Y Hong. (2014). Derivation of stable zebrafish ES-like cells in feeder-free culture. Cell Tissue Res.
  • 刊物主题:Cell Biology;
  • 出版者:Springer US
  • ISSN:1558-6804
文摘
The origin and evolution of molecular mechanisms underlying cellular pluripotency is a fundamental question in stem cell biology. The transcription factor Oct4 or Pou5f1 identified in mouse features pluripotency expression and activity in the inner cell mass and embryonic stem (ES) cells. Pou2 identified in zebrafish is the non-mammalian homolog prototype of mouse Oct4. The genes oct4 and pou2 have reportedly evolved by pou5 gene duplication in the common ancestor of vertebrates. Unlike mouse oct4, however, zebrafish pou2 lacks pluripotency expression and activity. Whether the presence of pluripotency expression and activity is specific for mammalian Oct4 or common to the ancestor of vertebrate Oct4 and Pou2 proteins has remained to be determined. Here we report that Oloct4, the medaka oct4/pou2, is essential for early embryogenesis and pluripotency maintenance. Oloct4 exists as a single copy gene and is orthologous to pou2 by sequence and chromosome synteny. Oloct4 expression occurs in early embryos, germ stem cells and ES cells like mouse oct4 but also in the brain and tail bud like zebrafish pou2. Importantly, OlOct4 depletion caused blastula lethality or blockage. We show that Oloct4 depletion abolishes ES cell derivation from midblastula embryos. Thus, Oloct4 has pluripotency expression and is essential for early embryogenesis and pluripotency maintenance. Our results demonstrate the conservation of pluripotency expression and activity in vertebrate Oct4 and Pou2 proteins. The finding that Oloct4 combines the features of mouse oct4 and zebrafish pou2 in expression and function suggests that Oloct4 might represent the ancestral prototype of vertebrate oct4 and pou2 genes.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700