A review of recent progress in plasmon-assisted nanophotonic devices
详细信息    查看全文
  • 作者:Jian Wang (1)
  • 关键词:plasmonics ; surface plasmon polariton (SPP) ; nanophotonic devices ; plasmonic waveguide ; photonic interconnection ; metamaterials
  • 刊名:Frontiers of Optoelectronics
  • 出版年:2014
  • 出版时间:September 2014
  • 年:2014
  • 卷:7
  • 期:3
  • 页码:320-337
  • 全文大小:2,974 KB
  • 参考文献:1. Brongersma M L, Hartman J W, Atwater H H. Plasmonics: electromagnetic energy transfer and switching in nanoparticle chainarrays below the diffraction limit. MRS Proceedings, 1999, 582: H10.5 CrossRef
    2. Zia R, Schuller J A, Chandran A, Brongersma M L. Plasmonics: the next chip-scale technology. Materials Today, 2006, 9(7鈥?): 20鈥?7 CrossRef
    3. Ozbay E. Plasmonics: merging photonics and electronics at nanoscale dimensions. Science, 2006, 311(5758): 189鈥?93 CrossRef
    4. Brongersma M L, Shalaev V M. Applied physics. The case for plasmonics. Science, 2010, 328(5977): 440鈥?41 CrossRef
    5. Schuller J A, Barnard E S, Cai W, Jun Y C, White J S, Brongersma M L. Plasmonics for extreme light concentration and manipulation. Nature Materials, 2010, 9(3): 193鈥?04 CrossRef
    6. Economou E N. Surface plasmons in thin films. Physical Review, 1969, 182(2): 539鈥?54 CrossRef
    7. Burke J J, Stegeman G I, Tamir T. Surface-polariton-like waves guided by thin, lossy metal films. Physical Review B: Condensed Matter and Materials Physics, 1986, 33(8): 5186鈥?201 CrossRef
    8. Raether H. Surface Plasmons on Smooth and Rough Surfaces and on Gratings. New York: Springer-Verlag, 1988
    9. Barnes W L, Dereux A, Ebbesen T W. Surface plasmon subwavelength optics. Nature, 2003, 424(6950): 824鈥?30 CrossRef
    10. Ebbesen TW, Genet C, Bozhevolnyi S I. Surface-plasmon circuitry. Physics Today, 2008, 61(5): 44鈥?0 CrossRef
    11. Gramotnev D K, Bozhevolnyi S I. Plasmonics beyond the diffraction limit. Nature Photonics, 2010, 4(2): 83鈥?1 CrossRef
    12. Zhang J, Zhang L. Nanostructures for surface plasmons. Advances in Optics and Photonics, 2012, 4(2): 157鈥?21 CrossRef
    13. Han Z, Bozhevolnyi S I. Radiation guiding with surface plasmon polaritons. Reports on Progress in Physics, 2013, 76(1): 016402 CrossRef
    14. Oulton R F, Bartal G, Pile D F P, Zhang X. Confinement and propagation characteristics of subwavelength plasmonic modes. New Journal of Physics, 2008, 10(10): 105018 CrossRef
    15. Alam M Z, Meier J, Aitchison J S, Mojahedi M. Super mode propagation in low index medium. In: Proceedings of Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies. OSA Technical Digest Series (CD) (Optical Society of America), 2007, JThD112
    16. Alam M Z, Aitchison J S, Mojahedi M. A marriage of convenience: hybridization of surface plasmon and dielectric waveguide modes. Laser & Photonics Reviews, 2014, 8(3): 394鈥?08 CrossRef
    17. Oulton R F, Sorger V J, Genov D A, Pile D F P, Zhang X. A hybrid plasmonic waveguide for subwavelength confinement and longrange propagation. Nature Photonics, 2008, 2(8): 496鈥?00 CrossRef
    18. Oulton R F, Sorger V J, Zentgraf T, Ma R M, Gladden C, Dai L, Bartal G, Zhang X. Plasmon lasers at deep subwavelength scale. Nature, 2009, 461(7264): 629鈥?32 CrossRef
    19. Homola J, Yee S S, Gauglitz G. Surface plasmon resonance sensors. Sensors and Actuators. B, Chemical, 1999, 54(1鈥?): 3鈥?5
    20. Berini P. Long-range surface plasmon polaritons. Advances in Optics and Photonics, 2009, 1(3): 484鈥?88 CrossRef
    21. Liu L, Han Z, He S. Novel surface plasmon waveguide for high integration. Optics Express, 2005, 13(17): 6645鈥?650 CrossRef
    22. Dai D, He S. A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement. Optics Express, 2009, 17(19): 16646鈥?6653 CrossRef
    23. Dai D, He S. Low-loss hybrid plasmonic waveguide with double low-index nano-slots. Optics Express, 2010, 18(17): 17958鈥?7966 CrossRef
    24. Kim J T, Ju J J, Park S, Kim M S, Park S K, Shin S Y. Hybrid plasmonic waveguide for low-loss lightwave guiding. Optics Express, 2010, 18(3): 2808鈥?813 CrossRef
    25. Kwon M S. Metal-insulator-silicon-insulator-metal waveguides compatible with standard CMOS technology. Optics Express, 2011, 19(9): 8379鈥?393 CrossRef
    26. Huang Q, Bao F, He S. Nonlocal effects in a hybrid plasmonic waveguide for nanoscale confinement. Optics Express, 2013, 21(2): 1430鈥?439 CrossRef
    27. Bian Y, Gong Q. Low-loss light transport at the subwavelength scale in silicon nano-slot based symmetric hybrid plasmonic waveguiding schemes. Optics Express, 2013, 21(20): 23907鈥?3920 CrossRef
    28. Huang C C. Ultra-long-range symmetric plasmonic waveguide for high-density and compact photonic devices. Optics Express, 2013, 21(24): 29544鈥?9557 CrossRef
    29. Chu H S, Li E P, Bai P, Hegde R. Optical performance of singlemode hybrid dielectric-loaded plasmonic waveguide-based components. Applied Physics Letters, 2010, 96(22): 221103 CrossRef
    30. Chen L, Zhang T, Li X, Huang W. Novel hybrid plasmonic waveguide consisting of two identical dielectric nanowires symmetrically placed on each side of a thin metal film. Optics Express, 2012, 20(18): 20535鈥?0544 CrossRef
    31. Xiang C, Wang J. Long-range hybrid plasmonic slot waveguide. IEEE Photonics Journal, 2013, 5(2): 4800311 CrossRef
    32. Xiang C, Wang J, Chan C K. Ultra-compact plasmonic microresonator with efficient thermo-optic tuning, high quality factor and small mode volume. In: Proceedings of CLEO: Science and Innovations. Optical Society of America, 2013, JTu4A.59
    33. Xiang C, Chan C K, Wang J. Proposal and numerical study of ultracompact active hybrid plasmonic resonator for sub-wavelength lasing applications. Scientific Reports, 2014, 4: 3720
    34. Du J, Gui C, Li C, Yang Q, Wang J. Design and fabrication of hybrid SPP waveguides for ultrahigh-bandwidth low-penalty 1.8-Tbit/s data transmission (161 WDM 11.2-Gbit/s OFDM 16-QAM). In: Proceedings of CLEO: Applications and Technology. Optical Society of America, 2014, JTh2A. 35
    35. Zhao Z, Wang J, Li S, Willner A E. Metamaterials-based broadband generation of orbital angular momentum carrying vector beams. Optics Letters, 2013, 38(6): 932鈥?34 CrossRef
    36. Zhao Z, Wang J, Li S, Willner A E. Selective broadband generation of orbital angular momentum carrying vector beams using metamaterials. In: Proceedings of CLEO: QELS Fundamental Science. Optical Society of America, 2013, QM4A.7
    37. Ritchie R H. Plasma losses by fast electrons in thin films. Physical Review, 1957, 106(5): 874鈥?81 CrossRef
    38. Almeida V R, Xu Q, Barrios C A, Lipson M. Guiding and confining light in void nanostructure. Optics Letters, 2004, 29(11): 1209鈥?211 CrossRef
    39. Koos C, Vorreau P, Vallaitis T, Dumon P, Bogaerts W, Baets R, Esembeson B, Biaggio I, Michinobu T, Diederich F, Freude W, Leuthold J. All-optical high-speed signal processing with silicon-organic hybrid slot waveguides. Nature Photonics, 2009, 3(4): 216鈥?19 CrossRef
    40. Spano R, Galan J V, Sanchis P, Martinez A, Marti J, Pavesi L. Group velocity dispersion in horizontal slot waveguides filled by Si nanocrystals.In: Proceedings of 5th IEEE International Conference on Group IV Photonics. IEEE, 2008, 314鈥?16
    41. Berini P. Figures of merit for surface plasmon waveguides. Optics Express, 2006, 14(26): 13030鈥?3042 CrossRef
    42. Mart铆nez A, Blasco J, Sanchis P, Gal谩n J V, Garc铆a-Rup茅rez J, Jordana E, Gautier P, Lebour Y, Hern谩ndez S, Guider R, Daldosso N, Garrido B, Fedeli J M, Pavesi L, Mart铆 J, Spano R. Ultrafast alloptical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths. Nano Letters, 2010, 10(4): 1506鈥?511 CrossRef
    43. Vahala K J. Optical microcavities. Nature, 2003, 424(6950): 839鈥?46 CrossRef
    44. Oxborrow M. Traceable 2-D finite-element simulation of the whispering-gallery modes of axisymmetric electromagnetic resonators. IEEE Transactions on Microwave Theory and Techniques, 2007, 55(6): 1209鈥?218 CrossRef
    45. Johnson P B, Christy R W. Optical constants of the noble metals. Physical Review B: Condensed Matter and Materials Physics, 1972, 6(12): 4370鈥?379 CrossRef
    46. Bass M, DeCusatis C, Enoch J, Lakshminarayanan V, Li G, MacDonald A, Mahajan V N, Van Stryland E W. Handbook of Optics, Volume II: Design, Fabrication and Testing, Sources and Detectors, Radiometry and Photometry. New York: McGraw-Hill, Inc., 2009
    47. Zhang X Y, Hu A, Zhang T, Xue X J, Wen J Z, Duley W W. Subwavelength plasmonic waveguides based on ZnO nanowires and nanotubes: a theoretical study of thermo-optical properties. Applied Physics Letters, 2010, 96(4): 043109 CrossRef
    48. Hill M T, Oei Y S, Smalbrugge B, Zhu Y, de Vries T, van Veldhoven P J, van Otten FWM, Eijkemans T J, Turkiewicz J P, de Waardt H, Geluk E J, Kwon S H, Lee Y H, N枚tzel R, Smit M K. Lasing in metallic-coated nanocavities. Nature Photonics, 2007, 1(10): 589鈥?94 CrossRef
    49. Noginov M A, Zhu G, Belgrave A M, Bakker R, Shalaev V M, Narimanov E E, Stout S, Herz E, Suteewong T, Wiesner U. Demonstration of a spaser-based nanolaser. Nature, 2009, 460(7259): 1110鈥?112 CrossRef
    50. Xiao Y F, Li B B, Jiang X, Hu X, Li Y, Gong Q. High quality factor, small mode volume, ring-type plasmonic microresonator on a silver chip. Journal of Physics. B, Atomic, Molecular, and Optical Physics, 2010, 43(3): 035402 CrossRef
    51. Zhu L. Modal properties of hybrid plasmonic waveguides for nanolaser applications. IEEE Photonics Technology Letters, 2010, 22(8): 535鈥?37 CrossRef
    52. Agarwal R, Barrelet C J, Lieber C M. Lasing in single cadmium sulfide nanowire optical cavities. Nano Letters, 2005, 5(5): 917鈥?20 CrossRef
    53. Allen L, Beijersbergen MW, Spreeuw R J C, Woerdman J P. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Physical Review A, 1992, 45(11): 8185鈥?189 CrossRef
    54. Franke-Arnold S, Allen L, Padgett M. Advances in optical angular momentum. Laser & Photonics Reviews, 2008, 2(4): 299鈥?13 CrossRef
    55. Yao A M, Padgett M J. Orbital angular momentum: origins, behavior and applications. Advances in Optics and Photonics, 2011, 3(2): 161鈥?04 CrossRef
    56. Gibson G, Courtial J, Padgett M, Vasnetsov M, Pas鈥檏o V, Barnett S, Franke-Arnold S. Free-space information transfer using light beams carrying orbital angular momentum. Optics Express, 2004, 12(22): 5448鈥?456 CrossRef
    57. Wang J, Yang J Y, Fazal I M, Ahmed N, Yan Y, Huang H, Ren Y, Yue Y, Dolinar S, Tur M, Willner A E. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nature Photonics, 2012, 6(7): 488鈥?96 CrossRef
    58. Stalder M, Schadt M. Linearly polarized light with axial symmetry generated by liquid-crystal polarization converters. Optics Letters, 1996, 21(23): 1948鈥?950 CrossRef
    59. Zhan Q. Cylindrical vector beams: from mathematical concepts to applications. Advances in Optics and Photonics, 2009, 1(1): 1鈥?7 CrossRef
    60. Ruan Z, Qiu M. Enhanced transmission through periodic arrays of subwavelength holes: the role of localized waveguide resonances. Physical Review Letters, 2006, 96(23): 233901 CrossRef
    61. Kang M, Chen J, Gu B, Li Y, Vuong L T, Wang H T. Spatial splitting of spin states in subwavelength metallic microstructures via partial conversion of spin-to-orbital angular momentum. Physical Review A, 2012, 85(3): 035801 CrossRef
    62. Poon AW, Luo X, Chen H, Fernandes G E, Chang R K. Microspiral resonators for integrated photonics. Optics and Photonics News, 2008, 19(10): 48鈥?3 CrossRef
  • 作者单位:Jian Wang (1)

    1. Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
  • ISSN:2095-2767
文摘
Plasmonics squeezes light into dimensions far beyond the diffraction limit by coupling the light with the surface collective oscillation of free electrons at the interface of a metal and a dielectric. Plasmonics, referred to as a promising candidate for high-speed and high-density integrated circuits, bridges microscale photonics and nanoscale electronics and offers similar speed of photonic devices and similar dimension of electronic devices. Various types of passive and active surface plasmon polariton (SPP) enabled devices with enhanced deep-subwavelength mode confinement have attracted increasing interest including waveguides, lasers and biosensors. Despite the trade-off between the unavoidable metal absorption loss and extreme light concentration, the ever-increasing research efforts have been devoted to seeking low-loss plasmon-assisted nanophotonic devices with deep-subwavelength mode confinement, which might find potential applications in high-density nanophotonic integration and efficient nonlinear signal processing. In addition, other plasmon-assisted nanophotonic devices might also promote grooming functionalities and applications benefiting from plasmonics. In this review article, we give a brief overview of our recent progress in plasmon-assisted nanophotonic devices and their wide applications, including long-range hybrid plasmonic slot (LRHPS) waveguide, ultra-compact plasmonic microresonator with efficient thermo-optic tuning, high quality (Q) factor and small mode volume, compact active hybrid plasmonic ring resonator for deep-subwavelength lasing applications, fabricated hybrid plasmonic waveguides for terabit-scale photonic interconnection, and metamaterials-based broadband and selective generation of orbital angular momentum (OAM) carrying vector beams. It is believed that plasmonics opens possible new ways to facilitate next chip-scale key devices and frontier technologies.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700