Graphene-based Superlens for Subwavelength Optical Imaging by Graphene Plasmon Resonances
详细信息    查看全文
  • 作者:Pengwei Wang ; Chaojun Tang ; Zhendong Yan ; Qiugu Wang ; Fanxin Liu ; Jing Chen…
  • 关键词:Graphene plasmons ; Superlens ; Subwavelength imaging ; Evanescent wave amplification
  • 刊名:Plasmonics
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:11
  • 期:2
  • 页码:515-522
  • 全文大小:7,109 KB
  • 参考文献:1.Born M, Wolf E (1999) Principles of optics: electromagnetic theory of propagation, interference and diffraction of light. Cambridge University Press, CambridgeCrossRef
    2.Pendry JB (2000) Negative refraction makes a perfect lens. Phys Rev Lett 85:3966CrossRef
    3.Fang N, Lee H, Sun C, Zhang X (2005) Sub-diffraction-limited optical imaging with a silver superlens. Science 308:534–537CrossRef
    4.Taubner T, Korobkin D, Urzhumov Y, Shvets G, Hillenbrand R (2006) Near-field microscopy through a SiC superlens. Science 313:1595CrossRef
    5.Liu Z, Steele JM, Srituravanich W, Pikus Y, Sun C, Zhang X (2005) Focusing surface plasmons with a plasmonic lens. Nano Lett 5:1726–1729CrossRef
    6.Zhang X, Liu Z (2008) Superlenses to overcome the diffraction limit. Nat Mater 7:435–441CrossRef
    7.Fu Y, Zhou X (2010) Plasmonic lenses: a review. Plasmonics 5:287–310CrossRef
    8.Grbic A, Eleftheriades GV (2004) Overcoming the diffraction limit with a planar left-handed transmission-line lens. Phys Rev Lett 92:117403CrossRef
    9.Novoselov KS, Geim AK, Morozov S, Jiang D, Zhang Y, Dubonos S, Grigorieva I, Firsov A (2004) Electric field effect in atomically thin carbon films. Science 306:666–669CrossRef
    10.Castro Neto AH, Peres NMR, Novoselov KS, Geim AK (2009) The electronic properties of graphene. Rev Mod Phys 81:109–162CrossRef
    11.Mak KF, Sfeir MY, Wu Y, Lui CH, Misewich JA, Heinz TF (2008) Measurement of the optical conductivity of graphene. Phys Rev Lett 101:196405CrossRef
    12.Stauber T, Peres N, Geim A (2008) Optical conductivity of graphene in the visible region of the spectrum. Phys Rev B 78:085432CrossRef
    13.Chen J, Badioli M, Alonso-González P, Thongrattanasiri S, Huth F, Osmond J, Spasenović M, Centeno A, Pesquera A, Godignon P, Elorza AZ, Camara N, Garcia de Abajo FJ, Hillenbrand R, Koppens FHL (2012) Optical nano-imaging of gate-tunable graphene plasmons. Nature 487:77–81
    14.Fei Z, Rodin SA, Andreev GO, Bao W, McLeod A, Wagner M, Zhang LM, Zhao Z, Thiemens M, Dominguez G, Fogler MM, Castro Neto AH, Lau CN, Keilmann F, Basov DN (2012) Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature 487:82–85
    15.Koppens FH, Chang DE, Garcia de Abajo FJ (2011) Graphene plasmonics: a platform for strong light-matter interactions. Nano Lett 11:3370–3377CrossRef
    16.Luo X, Qiu T, Lu W, Ni Z (2013) Plasmons in graphene: recent progress and applications. Mater Sci Eng R 74:351–376CrossRef
    17.García de Abajo FJ (2014) Graphene plasmonics: challenges and opportunities. ACS Photonics 1:135–152CrossRef
    18.Low T, Avouris P (2014) Graphene plasmonics for terahertz to mid-infrared applications. ACS Nano 8:1086–1101CrossRef
    19.Grigorenko A, Polini M, Novoselov K (2012) Graphene plasmonics. Nat Photonics 6:749–758CrossRef
    20.Bao Q, Loh KP (2012) Graphene photonics, plasmonics, and broadband optoelectronic devices. ACS Nano 6:3677–3694CrossRef
    21.Fang Z, Liu Z, Wang Y, Ajayan PM, Nordlander P, Halas NJ (2012) Graphene-antenna sandwich photodetector. Nano Lett 12:3808–3813CrossRef
    22.Yao Y, Kats MA, Genevet P, Yu NF, Song Y, Kong J, Capasso F (2013) Broad electrical tuning of graphene-loaded plasmonic antennas. Nano Lett 13:1257–1264CrossRef
    23.Popov VV, Polischuk OV, Davoyan AR, Ryzhii V, Otsuji T, Shur MS (2012) Plasmonic terahertz lasing in an array of graphene nanocavities. Phys Rev B 86:80–82
    24.Thongrattanasiri S, Koppens FH, García de Abajo FJ (2012) Complete optical absorption in periodically patterned graphene. Phys Rev Lett 108:799–802CrossRef
    25.Pirruccio G, Martín Moreno L, Lozano G, Gómez Rivas J (2013) Coherent and broadband enhanced optical absorption in graphene. ACS Nano 7:4810–4817CrossRef
    26.Vakil A, Engheta N (2011) Transformation optics using graphene. Science 332:1291–1294CrossRef
    27.Liu M, Yin X, Ulin-Avila E, Geng B, Zentgraf T, Ju L, Wang F, Zhang X (2011) A graphene-based broadband optical modulator. Nature 474:64–67CrossRef
    28.Liu M, Yin X, Zhang X (2012) Double-layer graphene optical modulator. Nano Lett 12:1482–1485CrossRef
    29.Yu R, Pruneri V, García de Abajo FJ (2015) Resonant visible light modulation with graphene. ACS Photonics 2:550–558CrossRef
    30.Bao Q, Zhang H, Wang B, Ni Z, Lim CHYX, Wang Y, Tang DY, Loh KP (2011) Broadband graphene polarizer. Nat Photonics 5:411–415CrossRef
    31.Xia F, Yan H, Li X, Chandra B, Tulevski G, Wu Y, Freitag M, Zhu W, Avouris P (2012) Graphene Plasmonic Terahertz Filters and Polarizers. APS March Meeting Abstracts, p 6002P
    32.Cheianov VV, Fal'ko V, Altshuler BL (2007) The focusing of electron flow and a Veselago lens in graphene pn junctions. Science 315:1252–1255CrossRef
    33.Gómez S, Burset P, Herrera W, Yeyati AL (2012) Selective focusing of electrons and holes in a graphene-based superconducting lens. Phys Rev B 85:115411CrossRef
    34.Silveirinha MG, Engheta N (2013) Spatial delocalization and perfect tunneling of matter waves: electron perfect lens. Phys Rev Lett 110:213902CrossRef
    35.Xu HJ, Lu WB, Jiang Y, Dong ZG (2012) Beam-scanning planar lens based on graphene. Appl Phys Lett 100:051903CrossRef
    36.Nasari H, Abrishamian MS (2014) Magnetically tunable focusing in a graded index planar lens based on graphene. J Optics 16:105502CrossRef
    37.Wang G, Liu X, Lu H, Zeng C (2014) Graphene plasmonic lens for manipulating energy flow. Sci Rep 4:4073
    38.Forati E, Hanson GW, Yakovlev AB, Alù A (2014) Planar hyperlens based on a modulated graphene monolayer. Phys Rev B 89:081410CrossRef
    39.Li P, Taubner T (2012) Broadband subwavelength imaging using a tunable graphene-lens. ACS Nano 6:10107–10114CrossRef
    40.Kong X-T, Khan AA, Kidambi PR, Deng S, Yetisen AK, Dlubak B, Hiralal P, Montelongo Y, Bowen J, Xavier S, Jiang K, Amaratunga GAJ, Hofmann S, Wilkinson TD, Dai Q, Butt H (2015) Graphene based ultra-thin flat lenses. ACS Photonics 2:200–207CrossRef
    41.Zhang T, Chen L, Li X (2013) Graphene-based tunable broadband hyperlens for far-field subdiffraction imaging at mid-infrared frequencies. Opt Express 21:20888–20899CrossRef
    42.Hanson GW (2008) Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene. J Appl Phys 103:064302CrossRef
    43.Bolotin KI, Sikes K, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer H (2008) Ultrahigh electron mobility in suspended graphene. Sold State Commun 146:351–355CrossRef
    44.Chen P-Y, Alù A (2011) Atomically thin surface cloak using graphene monolayers. ACS Nano 5:5855–5863CrossRef
    45.Mikhailov S, Ziegler K (2007) New electromagnetic mode in graphene. Phys Rev Lett 99:016803CrossRef
    46.He XY, Tao J, Meng B (2013) Analysis of graphene TE surface plasmons in the terahertz regime. Nanotechnology 24:345203CrossRef
    47.Zhan T, Shi X, Dai Y, Liu X, Zi J (2013) Transfer matrix method for optics in graphene layers. J Phys Condens Matter 25:215301CrossRef
    48.Stauber T, Gómez-Santos G (2012) Plasmons and near-field amplification in double-layer graphene. Phys Rev B 85:075410CrossRef
    49.Tang CJ, Gao L (2004) Surface polaritons and imaging properties of a multi-layer structure containing negative-refractive-index materials. J Phys Condens Matter 16:4743–4751CrossRef
  • 作者单位:Pengwei Wang (1)
    Chaojun Tang (1)
    Zhendong Yan (2)
    Qiugu Wang (3)
    Fanxin Liu (1) (2)
    Jing Chen (4)
    Zhijun Xu (1)
    Chenghua Sui (1)

    1. Department of Applied Physics, Zhejiang University of Technology, Xiaoheshan, Hangzhou, 310023, China
    2. National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing, 210093, China
    3. Department of Electrical and Computer Engineering, Iowa State University, Ames, IA, 50011, USA
    4. College of Electronic Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Biotechnology
    Nanotechnology
    Biophysics and Biomedical Physics
    Biochemistry
  • 出版者:Springer US
  • ISSN:1557-1963
文摘
Recently, graphene plasmons with an excellent tenability by doping or gating have been drawing increasing interest. In this work, we designed graphene-based superlens to achieve subwavelength optical imaging. We systematically investigated the imaging property in monolayer and multi-layer graphene structures and discussed in detail the effects of possible physical quantities. We found that the image resolution of the graphene-based superlens could be better than λ/50, since graphene plasmons could significantly amplify evanescent waves carrying the high spatial frequency information of the object, and restore them at the image plane.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700