Subwavelength electromagnetics
详细信息    查看全文
  • 作者:Xiangang Luo
  • 关键词:electromagnetics ; subwavelength scale ; metamaterials ; plasmonics ; photonic crystals
  • 刊名:Frontiers of Optoelectronics in China
  • 出版年:2016
  • 出版时间:June 2016
  • 年:2016
  • 卷:9
  • 期:2
  • 页码:138-150
  • 全文大小:4,904 KB
  • 参考文献:1.Lorentz H A. Collected Papers. Hague, 1937MATH CrossRef
    2.Jackson J D. Classical Electrodynamics. Hoboken: Wiley, 1999MATH
    3.Knott E F, Shaeffer J F, Tuley M T. Radar Cross Section. USA: SciTech Publishing, 2004CrossRef
    4.Zhou B, Kane T J, Dixon G J, Byer R L. Efficient, frequency-stable laser-diode-pumped Nd:YAG laser. Optics Letters, 1985, 10(2): 62–64CrossRef
    5.Gordon R G. Criteria for choosing transparent conductors. MRS Bulletin, 2000, 25(8): 52–57CrossRef
    6.West P R, Ishii S, Naik G V, Emani N K, Shalaev V M, Boltasseva A. Searching for better plasmonic materials. Laser & Photonics Reviews, 2010, 4(6): 795–808CrossRef
    7.De S, Coleman J N. Are there fundamental limitations on the sheet resistance and transmittance of thin graphene films? ACS Nano, 2010, 4(5): 2713–2720CrossRef
    8.Feynman R P. There’s plenty of room at the bottom. Engineering and Science, 1960, 23: 22–36
    9.Brongersma M L. Introductory lecture: nanoplasmonics. Faraday Discussions, 2015, 178: 9–36CrossRef
    10.Veselago V G. The electrodynamics of substances with simultaneously negative values of e and µ. Soviet Physics-Uspekhi, 1968, 10(4): 509–514CrossRef
    11.Pendry J B, Holden A J, Stewart W J, Youngs I. Extremely low frequency plasmons in metallic mesostructures. Physical Review Letters, 1996, 76(25): 4773–4776CrossRef
    12.Pendry J B, Holden A J, Robbins D J, Stewart W J. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Transactions on Microwave Theory and Techniques, 1999, 47(11): 2075–2084CrossRef
    13.Smith D R, Padilla W J, Vier D C, Nemat-Nasser S C, Schultz S. Composite medium with simultaneously negative permeability and permittivity. Physical Review Letters, 2000, 84(18): 4184–4187CrossRef
    14.Shelby R A, Smith D R, Schultz S. Experimental verification of a negative index of refraction. Science, 2001, 292(5514): 77–79CrossRef
    15.Pendry J B. Negative refraction makes a perfect lens. Physical Review Letters, 2000, 85(18): 3966–3969CrossRef
    16.Pendry J B, Schurig D, Smith D R. Controlling electromagnetic fields. Science, 2006, 312(5781): 1780–1782MathSciNet MATH CrossRef
    17.Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R. Metamaterial electromagnetic cloak at microwave frequencies. Science, 2006, 314(5801): 977–980CrossRef
    18.Emerson D T. The work of Jagadis Chandra Bose: 100 years of millimeter-wave research. IEEE Transactions on Microwave Theory and Techniques, 1997, 45(12): 2267–2273CrossRef
    19.Ritchie R H. Plasma losses by fast electrons in thin films. Physical Review, 1957, 106(5): 874–881MathSciNet CrossRef
    20.Luo X. Principles of electromagnetic waves in metasurfaces. Science China-Physics, Mechanics & Astronomy, 2015, 58(9): 594201CrossRef
    21.Luo X, Pu M, Ma X, Li X. Taming the electromagnetic boundaries via metasurfaces: from theory and fabrication to functional devices. International Journal of Antennas and Propagation, 2015, 16: 204127
    22.Leonhardt U. Optical conformal mapping. Science, 2006, 312(5781): 1777–1780MathSciNet MATH CrossRef
    23.Valentine J, Li J, Zentgraf T, Bartal G, Zhang X. An optical cloak made of dielectrics. Nature Materials, 2009, 8(7): 568–571CrossRef
    24.Liu R, Ji C, Mock J J, Chin J Y, Cui T J, Smith D R. Broadband ground-plane cloak. Science, 2009, 323(5912): 366–369CrossRef
    25.Gabrielli L H, Cardenas J, Poitras C B, Lipson M. Silicon nanostructure cloak operating at optical frequencies. Nature Photonics, 2009, 3(8): 461–463CrossRef
    26.Hashemi H, Zhang B, Joannopoulos J D, Johnson S G. Delaybandwidth and delay-loss limitations for cloaking of large objects. Physical Review Letters, 2010, 104(25): 253903CrossRef
    27.Li J, Pendry J B. Hiding under the carpet: a new strategy for cloaking. Physical Review Letters, 2008, 101(20): 203901CrossRef
    28.Zigoneanu L, Popa B I, Cummer S A. Three-dimensional broadband omnidirectional acoustic ground cloak. Nature Materials, 2014, 13(4): 352–355CrossRef
    29.Han T, Bai X, Gao D, Thong J T L, Li B, Qiu C W. Experimental demonstration of a bilayer thermal cloak. Physical Review Letters, 2014, 112(5): 054302CrossRef
    30.Ni X, Wong Z J, Mrejen M, Wang Y, Zhang X. An ultrathin invisibility skin cloak for visible light. Science, 2015, 349(6254): 1310–1314CrossRef
    31.Pu M, Zhao Z, Wang Y, Li X, Ma X, Hu C, Wang C, Huang C, Luo X. Spatially and spectrally engineered spin-orbit interaction for achromatic virtual shaping. Scientific Reports, 2015, 5: 9822CrossRef
    32.Zhao Z, Pu M, Gao H, Jin J, Li X, Ma X, Wang Y, Gao P, Luo X. Multispectral optical metasurfaces enabled by achromatic phase transition. Scientific Reports, 2015, 5: 15781CrossRef
    33.Aieta F, Kats M A, Genevet P, Capasso F. Multiwavelength achromatic metasurfaces by dispersive phase compensation. Science, 2015, 347(6228): 1342–1345CrossRef
    34.Liu Z, Lee H, Xiong Y, Sun C, Zhang X. Far-field optical hyperlens magnifying sub-diffraction-limited objects. Science, 2007, 315(5819): 1686CrossRef
    35.Jacob Z, Alekseyev L V, Narimanov E. Optical Hyperlens: farfield imaging beyond the diffraction limit. Optics Express, 2006, 14(18): 8247–8256CrossRef
    36.Kildishev A V, Narimanov E E. Impedance-matched hyperlens. Optics Letters, 2007, 32(23): 3432–3434CrossRef
    37.Poddubny A, Iorsh I, Belov P, Kivshar Y. Hyperbolic metamaterials. Nature Photonics, 2013, 7(12): 948–957CrossRef
    38.Liang G, Wang C, Zhao Z, Wang Y, Yao N, Gao P, Luo Y, Gao G, Zhao Q, Luo X. Squeezing bulk plasmon polaritons through hyperbolic metamaterial for large area deep subwavelength interference lithography. Advanced Optical Materials, 2015, 3(9): 1248–1256CrossRef
    39.Engheta N. Thin absorbing screens using metamaterial surfaces. IEEE Antennas and Propagation Society International Symposium, 2002, 2: 392–395CrossRef
    40.Sievenpiper D F, Schaffner J H, Song H J, Loo R Y, Tangonan G. Two-dimensional beam steering using an electrically tunable impedance surface. IEEE Transactions on Antennas and Propagation, 2003, 51(10): 2713–2722CrossRef
    41.Munk B A. Frequency Selective Surfaces. New York: Wiley, 2000CrossRef
    42.Senior T. Approximate boundary conditions. IEEE Transactions on Antennas and Propagation, 1981, 29(5): 826–829MathSciNet CrossRef
    43.Meinzer N, Barnes W L, Hooper I R. Plasmonic meta-atoms and metasurfaces. Nature Photonics, 2014, 8(12): 889–898CrossRef
    44.Salisbury W W. Absorbent body for electromagnetic waves. United States Patent, 1952, 2599944
    45.Sievenpiper D F. High-impedance electromagnetic surfaces. Dissertation for the Doctoral Degree. Los Angeles: University of California, 1999
    46.Pu M, Feng Q, Hu C, Luo X. Perfect absorption of light by coherently induced plasmon hybridization in ultrathin metamaterial film. Plasmonics, 2012, 7(4): 733–738CrossRef
    47.Sievenpiper D, Zhang L, Broas R, Alexopolous N, Yablonovitch E. High-impedance electromagnetic surfaces with a forbidden frequency band. IEEE Transactions on Microwave Theory and Techniques, 1999, 47(11): 2059–2074CrossRef
    48.Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J. Perfect metamaterial absorber. Physical Review Letters, 2008, 100(20): 207402CrossRef
    49.Pu M, Hu C, Wang M, Huang C, Zhao Z, Wang C, Feng Q, Luo X. Design principles for infrared wide-angle perfect absorber based on plasmonic structure. Optics Express, 2011, 19(18): 17413–17420CrossRef
    50.Vora A, Gwamuri J, Pala N, Kulkarni A, Pearce J M, Güney D Ö. Exchanging ohmic losses in metamaterial absorbers with useful optical absorption for photovoltaics. Scientific Reports, 2014, 4: 4901CrossRef
    51.Hao J, Wang J, Liu X, Padilla W J, Zhou L, Qiu M. High performance optical absorber based on a plasmonic metamaterial. Applied Physics Letters, 2010, 96(25): 251104CrossRef
    52.Feng Q, Pu M, Hu C, Luo X. Engineering the dispersion of metamaterial surface for broadband infrared absorption. Optics Letters, 2012, 37(11): 2133–2135CrossRef
    53.Rozanov K N. Ultimate thickness to bandwidth ratio of radar absorbers. IEEE Transactions on Antennas and Propagation, 2000, 48(8): 1230–1234CrossRef
    54.Brewitt-Taylor C R. Limitation on the bandwidth of artificial perfect magnetic conductor surfaces. IET Microwaves, Antennas & Propagation, 2007, 1(1): 255–260CrossRef
    55.Pu M, Feng Q, Wang M, Hu C, Huang C, Ma X, Zhao Z, Wang C, Luo X. Ultrathin broadband nearly perfect absorber with symmetrical coherent illumination. Optics Express, 2012, 20(3): 2246–2254CrossRef
    56.Li S, Luo J, Anwar S, Li S, Lu W, Hang Z H, Lai Y, Hou B, Shen M, Wang C. Broadband perfect absorption of ultrathin conductive films with coherent illumination: Superabsorption of microwave radiation. Physical Review B: Condensed Matter and Materials Physics, 2015, 91(22): 220301CrossRef
    57.Li S, Duan Q, Li S, Yin Q, Lu W, Li L, Gu B, Hou B, Wen W. Perfect electromagnetic absorption at one-atom-thick scale. Applied Physics Letters, 2015, 107(18): 181112CrossRef
    58.Bharadwaj P, Deutsch B, Novotny L. Optical antennas. Advances in Optics and Photonics, 2009, 1(3): 438–483CrossRef
    59.Engheta N. Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials. Science, 2007, 317(5845): 1698–1702CrossRef
    60.Enoch S, Tayeb G, Sabouroux P, Guérin N, Vincent P. A metamaterial for directive emission. Physical Review Letters, 2002, 89(21): 213902CrossRef
    61.Lezec H J, Degiron A, Devaux E, Linke R A, Martin-Moreno L, Garcia-Vidal F J, Ebbesen T W. Beaming light from a subwavelength aperture. Science, 2002, 297(5582): 820–822CrossRef
    62.Xu H, Zhao Z, Lv Y, Du C, Luo X. Metamaterial superstrate and electromagnetic band-gap substrate for high directive antenna. International Journal of Infrared and Millimeter Waves, 2008, 29(5): 493–498CrossRef
    63.Lier E, Werner D H, Scarborough C P, Wu Q, Bossard J A. An octave-bandwidth negligible-loss radiofrequency metamaterial. Nature Materials, 2011, 10(3): 216–222CrossRef
    64.Wang M, Huang C, Pu M, Luo X. Reducing side lobe level of antenna using frequency selective surface superstrate. Microwave and Optical Technology Letters, 2015, 57(8): 1971–1975CrossRef
    65.Ma X, Pan W, Huang C, Pu M, Wang Y, Zhao B, Cui J, Wang C, Luo X. An active metamaterial for polarization manipulating. Advanced Optical Materials, 2014, 2(10): 945–949CrossRef
    66.Ma X, Huang C, Pan W, Zhao B, Cui J, Luo X. A dual circularly polarized horn antenna in Ku-band based on chiral metamaterial. IEEE Transactions on Antennas and Propagation, 2014, 62(4): 2307–2311CrossRef
    67.Pan W, Huang C, Chen P, Ma X, Hu C, Luo X. A low-RCS and high-gain partially reflecting surface antenna. IEEE Transactions on Antennas and Propagation, 2014, 62(2): 945–949CrossRef
    68.Pan W, Huang C, Chen P, Pu M, Ma X, Luo X. A beam steering horn antenna using active frequency selective surface. IEEE Transactions on Antennas and Propagation, 2013, 61(12): 6218–6223CrossRef
    69.Huang C, Pan W, Ma X, Zhao B, Cui J, Luo X. Using reconfigurable transmitarray to achieve beam-steering and polar-ization manipulation applications. IEEE Transactions on Antennas and Propagation, 2015, 63(11): 4801–4810MathSciNet CrossRef
    70.Young L, Robinson L A, Hacking C. Meander-line polarizer. IEEE Transactions on Antennas and Propagation, 1973, 21(3): 376–378CrossRef
    71.Flanders D C. Submicrometer periodicity gratings as artificial anisotropic dielectrics. Applied Physics Letters, 1983, 42(6): 492–494CrossRef
    72.Ma X, Huang C, Pu M, Wang Y, Zhao Z, Wang C, Luo X. Dualband asymmetry chiral metamaterial based on planar spiral structure. Applied Physics Letters, 2012, 101(16): 161901CrossRef
    73.Huang C, Ma X, Pu M, Yi G, Wang Y, Luo X. Dual-band 90° polarization rotator using twisted split ring resonators array. Optics Communications, 2013, 291: 345–348CrossRef
    74.Hao J, Yuan Y, Ran L, Jiang T, Kong J A, Chan C T, Zhou L. Manipulating electromagnetic wave polarizations by anisotropic metamaterials. Physical Review Letters, 2007, 99(6): 063908CrossRef
    75.Pors A, Nielsen M G, Valle G D, Willatzen M, Albrektsen O, Bozhevolnyi S I. Plasmonic metamaterial wave retarders in reflection by orthogonally oriented detuned electrical dipoles. Optics Letters, 2011, 36(9): 1626–1628CrossRef
    76.Pu M, Chen P, Wang Y, Zhao Z, Huang C, Wang C, Ma X, Luo X. Anisotropic meta-mirror for achromatic electromagnetic polarization manipulation. Applied Physics Letters, 2013, 102(13): 131906CrossRef
    77.Grady N K, Heyes J E, Chowdhury D R, Zeng Y, Reiten M T, Azad A K, Taylor A J, Dalvit D A R, Chen H T. Terahertz metamaterials for linear polarization conversion and anomalous refraction. Science, 2013, 340(6138): 1304–1307CrossRef
    78.Guo Y, Wang Y, Pu M, Zhao Z, Wu X, Ma X, Wang C, Yan L, Luo X. Dispersion management of anisotropic metamirror for superoctave bandwidth polarization conversion. Scientific Reports, 2015, 5: 8434CrossRef
    79.Cardano F, Marrucci L. Spin-orbit photonics. Nature Photonics, 2015, 9(12): 776–778CrossRef
    80.Ma X, Pu M, Li X, Huang C, Wang Y, Pan W, Zhao B, Cui J, Wang C, Zhao Z, Luo X. A planar chiral meta-surface for optical vortex generation and focusing. Scientific Reports, 2015, 5: 10365CrossRef
    81.Berry M V. Quantal phase factors accompanying adiabatic changes. Proceedings of the Royal Society of London Series A: Mathematical and Physical Sciences, 1984, 392(1802): 45–57MathSciNet MATH CrossRef
    82.Hasman E, Kleiner V, Biener G, Niv A. Polarization dependent focusing lens by use of quantized Pancharatnam–Berry phase diffractive optics. Applied Physics Letters, 2003, 82(3): 328–330CrossRef
    83.Yu N, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science, 2011, 334(6054): 333–337CrossRef
    84.Ni X, Emani N K, Kildishev A V, Boltasseva A, Shalaev V M. Broadband light bending with plasmonic nanoantennas. Science, 2012, 335(6067): 427CrossRef
    85.Pu M, Li X, Ma X, Wang Y, Zhao Z, Wang C, Hu C, Gao P, Huang C, Ren H, Li X, Qin F, Yang J, Gu M, Hong M, Luo X. Catenary optics for achromatic generation of perfect optical angular momentum. Science Advances, 2015, 1(9): e1500396CrossRef
    86.Wang Y, Pu M, Zhang Z, Li X, Ma X, Zhao Z, Luo X. Quasicontinuous metasurface for ultra
    oadband and polarizationcontrolled electromagnetic beam deflection. Scientific Reports, 2015, 5: 17733CrossRef
    87.Li X, Pu M, Zhao Z, Ma X, Jin J, Wang Y, Gao P, Luo X. Catenary nanostructures as compact Bessel beam generators. Scientific Reports, 2016, 6: 20524CrossRef
    88.Wang Y, Pu M, Hu C, Zhao Z, Wang C, Luo X. Dynamic manipulation of polarization states using anisotropic meta-surface. Optics Communications, 2014, 319(0): 14–16CrossRef
    89.Shi J, Fang X, Rogers E T F, Plum E, MacDonald K F, Zheludev N I. Coherent control of Snell’s law at metasurfaces. Optics Express, 2014, 22(17): 21051–21060CrossRef
    90.Li X, Pu M, Wang Y, Ma X, Li Y, Gao H, Zhao Z, Gao P, Wang C, Luo X. Dynamic control of the extraordinary optical scattering in semi-continuous two-dimensional metamaterials. Advanced Optical Materials, 2016, doi: 10.1002/adom.201500713
    91.Maier S A. Plasmonics: Fundamentals and Applications. New York: Springer, 2007
    92.Luo X, Yan L. Surface plasmon polaritons and its applications. IEEE Photonics Journal, 2012, 4(2): 590–595CrossRef
    93.Polo J A, Lakhtakia A. Surface electromagnetic waves: a review. Laser & Photonics Reviews, 2011, 5(2): 234–246CrossRef
    94.Zhao Z, Luo Y, Zhang W, Wang C, Gao P, Wang Y, Pu M, Yao N, Zhao C, Luo X. Going far beyond the near-field diffraction limit via plasmonic cavity lens with high spatial frequency spectrum offaxis illumination. Scientific Reports, 2015, 5: 15320CrossRef
    95.Yao H, Yu G, Yan P, Chen X, Luo X. Patterining sub 100 nm isolated patterns with 436 nm lithography. In: Proceedings of 2003 International Microprocesses and Nanotechnology Conference. 2003, 7947638
    96.Luo X, Ishihara T. Surface plasmon resonant interference nanolithography technique. Applied Physics Letters, 2004, 84(23): 4780–4782CrossRef
    97.Luo X, Ishihara T. Subwavelength photolithography based on surface-plasmon polariton resonance. Optics Express, 2004, 12(14): 3055–3065CrossRef
    98.Wang C, Gao P, Zhao Z, Yao N, Wang Y, Liu L, Liu K, Luo X. Deep sub-wavelength imaging lithography by a reflective plasmonic slab. Optics Express, 2013, 21(18): 20683–20691CrossRef
    99.Luo J, Zeng B, Wang C, Gao P, Liu K, Pu M, Jin J, Zhao Z, Li X, Yu H, Luo X. Fabrication of anisotropically arrayed nano-slots metasurfaces using reflective plasmonic lithography. Nanoscale, 2015, 7(44): 18805–18812CrossRef
    100.Gao P, Yao N, Wang C, Zhao Z, Luo Y, Wang Y, Gao G, Liu K, Zhao C, Luo X. Enhancing aspect profile of half-pitch 32 nm and 22 nm lithography with plasmonic cavity lens. Applied Physics Letters, 2015, 106(9): 093110CrossRef
    101.Coles J A. Some reflective properties of the tapetum lucidum of the cat’s eye. The Journal of Physiology, 1971, 212(2): 393–409CrossRef
    102.Li Y, Li X, Pu M, Zhao Z, Ma X, Wang Y, Luo X. Achromatic flat optical components via compensation between structure and material dispersions. Scientific Reports, 2016, 6: 19885CrossRef
    103.Tang D, Wang C, Zhao Z, Wang Y, Pu M, Li X, Gao P, Luo X. Ultrabroadband superoscillatory lens composed by plasmonic metasurfaces for subdiffraction light focusing. Laser & Photonics Reviews, 2015, 9(6): 713–719CrossRef
    104.Wang C, Tang D, Wang Y, Zhao Z, Wang J, Pu M, Zhang Y, Yan W, Gao P, Luo X. Super-resolution optical telescopes with local light diffraction shrinkage. Scientific Reports, 2015, 5: 18485CrossRef
    105.Li Y, Liu F, Xiao L, Cui K, Feng X, Zhang W, Huang Y. Twosurface-plasmon-polariton-absorption based nanolithography. Applied Physics Letters, 2013, 102(6): 063113CrossRef
    106.Narimanov E E, Kildishev A V. Optical black hole: broadband omnidirectional light absorber. Applied Physics Letters, 2009, 95 (4): 041106CrossRef
    107.Sheng C, Liu H, Wang Y, Zhu S N, Genov D A. Trapping light by mimicking gravitational lensing. Nature Photonics, 2013, 7(11): 902–906CrossRef
    108.Fleischhauer M, Imamoglu A, Marangos J P. Electromagnetically induced transparency: optics in coherent media. Reviews of Modern Physics, 2005, 77(2): 633–673CrossRef
    109.Miroshnichenko A E, Flach S, Kivshar Y S. Fano resonances in nanoscale structures. Reviews of Modern Physics, 2010, 82(3): 2257–2298CrossRef
    110.Fano U. Effects of configuration interaction on intensities and phase shifts. Physical Review, 1961, 124(6): 1866–1878MATH CrossRef
    111.Luk’yanchuk B, Zheludev N I, Maier S A, Halas N J, Nordlander P, Giessen H, Chong C T. The Fano resonance in plasmonic nanostructures and metamaterials. Nature Materials, 2010, 9(9): 707–715CrossRef
    112.Pu M, Hu C, Huang C, Wang C, Zhao Z, Wang Y, Luo X. Investigation of Fano resonance in planar metamaterial with perturbed periodicity. Optics Express, 2013, 21(1): 992–1001CrossRef
    113.Pu M, Song M, Yu H, Hu C, Wang M, Wu X, Luo J, Zhang Z, Luo X. Fano resonance induced by mode coupling in all-dielectric nanorod array. Applied Physics Express, 2014, 7(3): 032002CrossRef
    114.Chen S, Jin S, Gordon R. Subdiffraction focusing enabled by a fano resonance. Physical Review X, 2014, 4(3): 031021CrossRef
    115.Song M, Wang C, Zhao Z, Pu M, Liu L, Zhang W, Yu H, Luo X. Nanofocusing beyond the near-field diffraction limit via plasmonic Fano resonance. Nanoscale, 2016, 8(3): 1635–1641CrossRef
    116.McPhedran R C, Parker A R. Biomimetics: lessons on optics from nature’s school. Physics Today, 2015, 68(6): 32–37CrossRef
  • 作者单位:Xiangang Luo (1)

    1. State Key Laboratory of Optical Technologies on Nano-Fabrication and Micro-Engineering, Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu, 610209, China
  • 刊物类别:Engineering
  • 刊物主题:Electronic and Computer Engineering
    Electromagnetism, Optics and Lasers
    Biomedical Engineering
    Chinese Library of Science
  • 出版者:Higher Education Press, co-published with Springer-Verlag GmbH
  • ISSN:2095-2767
文摘
Subwavelength electromagnetics is a discipline that deals with light-matter interaction at subwavelength scale and innovative technologies that control electromagnetic waves with subwavelength structures. Although the history can be dated back to almost one hundred years ago, the flourish of these researching areas have been no more than 30 years. In this paper, we gave a brief review of the history, current status and future trends of subwavelength electromagnetics. In particular, the milestones related with metamaterials, plasmonics, metasurfaces and photonic crystals are highlighted.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700