Modeling of landslide generated impulsive waves considering complex topography in reservoir area
详细信息    查看全文
  • 作者:Wei Wang ; Guangqi Chen ; Kunlong Yin ; Yang Wang ; Suhua Zhou…
  • 关键词:Landslide ; Impulsive wave ; Complex topography ; Physical experiment ; Smoothed particle hydrodynamics
  • 刊名:Environmental Earth Sciences
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:75
  • 期:5
  • 全文大小:2,639 KB
  • 参考文献:Aida I (1975) Numerical experiments of the tsunami associated with the collapse of Mt. Mayuyama in 1792. J Seismol Soc Jpn 28:449–460
    Ataie-Ashtiani B, Nik-Khah A (2008) Impulsive waves caused by subaerial landslides. Environ Fluid Mech 8:263–280. doi:10.​1007/​s10652-008-9074-7 CrossRef
    Ataie-Ashtiani B, Shobeyri G (2008) Numerical simulation of landslide impulsive waves by incompressible smoothed particle hydrodynamics. Int J Numer Meth Fluids 56:209–232CrossRef
    Ataie-Ashtiani B, Yavari-Ramshe S (2011) Numerical simulation of wave generated by landslide incidents in dam reservoirs. Landslides 8:417–432. doi:10.​1007/​s10346-011-0258-8 CrossRef
    Bosa S, Petti M (2011) Shallow water numerical model of the wave generated by the Vajont landslide. Environ Model Softw 26:406–418. doi:10.​1016/​j.​envsoft.​2010.​10.​001 CrossRef
    Camfield FE (1980) Tsunami Engineering. Special report No.6. US Army Corps of Engineers, Costal Engineering Research Center. Fort Belvoir, Va
    Crespo A, Gómez-Gesteira M, Dalrymple RA (2007) Boundary conditions generated by dynamic particles in SPH methods, 5th edn. CMC-TECH Science Press, Norcross, p 173
    Crespo AC, Dominguez JM, Barreiro A et al (2011) GPUs, a new tool of acceleration in CFD: efficiency and reliability on smoothed particle hydrodynamics methods. PLoS One 6:e20685. doi:10.​1371/​journal.​pone.​0020685 CrossRef
    Crespo A, Domínguez J, Gesteira M et al (2012) User guide for DualSPHysics code. SPHysics project, v2.0 edition. http://​dual.​sphysics.​org/​files/​3313/​8753/​4540/​DualSPHysics_​v3.​0_​GUIDE.​pdf . Accessed Dec 2013
    Dai F, Deng J, Tham L et al (2004) A large landslide in Zigui County, Three Gorges area. Can Geotech J 41:1233–1240. doi:10.​1139/​T04-049 CrossRef
    Das K, Janetzke R, Basu D et al (2009) Numerical simulations of tsunami wave generation by submarine and aerial landslides using RANS and SPH models. In: ASME 2009 28th international conference on Ocean, Offshore and Arctic Engineering, 2009. American Society of Mechanical Engineers, pp 581–594
    de Carvalho RF, do Carmo JSA (2007) Landslides into reservoirs and their impacts on banks. Environ Fluid Mech 7:481–493CrossRef
    Fine I, Rabinovich A, Bornhold B et al (2005) The Grand Banks landslide-generated tsunami of November 18, 1929: preliminary analysis and numerical modeling. Mar Geol 215:45–57. doi:10.​1016/​j.​margeo.​2004.​11.​007 CrossRef
    Fritz HM (2001) Lituya Bay case rockslide impact and wave run-up. Sci Tsunami Hazards 19:3–22
    Fritz H, Hager W, Minor H-E (2003) Landslide generated impulse waves. 2. Hydrodynamic impact craters. Exp Fluids 35:520–532. doi:10.​1007/​s00348-003-0660-7 CrossRef
    Fritz H, Hager W, Minor H-E (2004) Near field characteristics of landslide generated impulse waves. J Waterw Port Coast Ocean Eng 130:287–302CrossRef
    Geist EL, Lynett PJ, Chaytor JD (2009) Hydrodynamic modeling of tsunamis from the Currituck landslide. Mar Geol 264:41–52. doi:10.​1016/​j.​margeo.​2008.​09.​005 CrossRef
    Gomez-Gesteira M, Crespo AJ, Rogers BD et al (2012) SPHysics–development of a free-surface fluid solver–Part 2: efficiency and test cases. Comput Geosci 48:300–307. doi:10.​1016/​j.​cageo.​2012.​02.​028 CrossRef
    Heinrich P, Mangeney A, Guibourg S et al (1998) Simulation of water waves generated by a potential debris avalanche in Montserrat, Lesser Antilles. Geophys Res Lett 25:3697–3700. doi:10.​1029/​98gl01407 CrossRef
    Heinrich P, Guibourg S, Mangeney A et al (1999) Numerical modeling of a landslide-generated tsunami following a potential explosion of the Montserrat volcano. Phys Chem Earth Part A 24:163–168. doi:10.​1016/​S1464-1895(99)00013-7 CrossRef
    Heller V (2007) Landslide generated impuls waves. Diss., Eidgenössische Technische Hochschule ETH Zürich, Nr. 17531, 2007, Place
    Heller, V, Hager WH, Minor HE (2009) Landslide generated impulse waves in reservoirs. VAW Publication, Zurich, pp 1–9
    Heller V, Hager WH (2010) Impulse product parameter in landslide generated impulse waves. J Waterw Port Coast Ocean Eng 136:145–155. doi:10.​1061/​(Asce)Ww.​1943-5460.​0000037 CrossRef
    Heller V, Hager W (2011) Wave types of landslide generated impulse waves. Ocean Eng 38:630–640. doi:10.​1016/​j.​oceaneng.​2010.​12.​010 CrossRef
    Huang Z, Law KT, Liu H et al (2009) The chaotic characteristics of landslide evolution: a case study of Xintan landslide. Environ Geol 56:1585–1591. doi:10.​1007/​s00254-008-1256-6 CrossRef
    Huang B, Yin Y, Chen X et al (2014) Experimental modeling of tsunamis generated by subaerial landslides: two case studies of the Three Gorges Reservoir, China. Environ Earth Sci 71:3813–3825. doi:10.​1007/​s12665-013-2765-5 CrossRef
    Hughes SA (2005) Physical models and laboratory techniques in coastal engineering. World Scientific Publishing Co Pte Ltd, Singapore
    Kamphuis, J, Bowering R (1970) Impulse waves generated by landslides. In: Proceedings of 12th Coastal Engineering Conference, Washington DC, vol 1. ASCE, New York, pp 575–588
    Li D, Yin K, Leo C (2010) Analysis of Baishuihe landslide influenced by the effects of reservoir water and rainfall. Environ Earth Sci 60:677–687. doi:10.​1007/​s12665-009-0206-2 CrossRef
    Liu M, Liu G (2010) Smoothed particle hydrodynamics (SPH): an overview and recent developments. Arch Comput Methods Eng 17:25–76. doi:10.​1007/​s11831-010-9040-7 CrossRef
    McMurtry G, Watts P, Fryer G et al (2004) Giant landslides, mega-tsunamis, and paleo-sea level in the Hawaiian Islands. Mar Geol 203:219–233. doi:10.​1016/​S0025-3227(03)00306-2 CrossRef
    Mishiue M, Hinokidani O, Miyamoto K (1999) Study on the Mayuyama tsunami disaster in 1792. In: Proceedings of the 28th congress of IAHR, CD, 1999
    Miyagi T, Kasai F, Yamashina S (2008) Huge landslide triggered by earthquake at the Aratozawa Dam area, Tohoku, Japan. In: Proceedings of the First World Landslide Forum. ICL, ISDR, Tokyo, Japan, 2008, pp 421–424
    Miyagi T, Yamashina S, Esaka F et al (2011) Massive landslide triggered by 2008 Iwate–Miyagi inland earthquake in the Aratozawa Dam area, Tohoku, Japan. Landslides 8:99–108. doi:10.​1007/​s10346-010-0226-8 CrossRef
    Monaghan JJ (1992) Smoothed particle hydrodynamics. Ann Rev Astron Astrophys 30:543–574. doi:10.​1146/​annurev.​aa.​30.​090192.​002551 CrossRef
    Monaghan JJ (1994) Simulating free surface flows with SPH. J Comput Phys 110:399–406. doi:10.​1006/​jcph.​1994.​1034 CrossRef
    Noda E (1970) Water waves generated by landslides. J Waterw Harb Coast Eng Div 96:835–855
    Panizzo A, De Girolamo P, Di Risio M et al (2005) Great landslide events in Italian artificial reservoirs. Nat Hazard Earth Syst Sci 5:733–740CrossRef
    Pérez G, García-Navarro P, Vázquez-Cendón M (2006) One-dimensional model of shallow water surface waves generated by landslides. J Hydraul Eng 132:462–473CrossRef
    Petley D (2010) Landslide hazards. In: Alcantara-Ayala I, Goudie A (eds) Geomorphological hazards and disaster prevention. Cambridge University Press, Cambridge, pp 63–74
    Qiu L-C (2008) Two-dimensional SPH simulations of landslide-generated water waves. J Hydraul Eng 134:668–671. doi:10.​1061/​(Asce)0733-9429(2008)134:​5(668) CrossRef
    Quecedo M, Pastor M, Herreros M (2004) Numerical modelling of impulse wave generated by fast landslides. Int J Numer Meth Eng 59:1633–1656. doi:10.​1002/​nme.​934 CrossRef
    Risley JC, Walder JS, Denlinger RP (2006) Usoi Dam wave overtopping and flood routing in the Bartang and Panj Rivers, Tajikistan. Nat Hazards 38:375–390. doi:10.​1007/​s11069-005-1923-9 CrossRef
    Semenza E, Ghirotti M (2000) History of the 1963 Vaiont slide: the importance of geological factors. Bull Eng Geol Environ 59:87–97CrossRef
    Vacondio R, Rogers B, Stansby P et al (2013) Variable resolution for SPH: a dynamic particle coalescing and splitting scheme. Comput Methods Appl Mech Eng 256:132–148. doi:10.​1016/​j.​cma.​2012.​12.​014 CrossRef
    Viroulet S, Cébron D, Kimmoun O et al (2013) Shallow water waves generated by subaerial solid landslides. Geophys J Int 193:747–762. doi:10.​1093/​gji/​ggs133 CrossRef
    Walder JS, Watts P, Sorensen OE et al (2003) Tsunamis generated by subaerial mass flows. J Geophys Res: Solid Earth 1978–2012:108. doi:10.​1029/​2001jb000707
    Watts P, Grilli S, Kirby J et al (2003) Landslide tsunami case studies using a Boussinesq model and a fully nonlinear tsunami generation model. Nat Hazard Earth Syst Sci 3(5):391–402CrossRef
    Wroniszewski PA, Verschaeve JC, Pedersen GK (2014) Benchmarking of Navier-Stokes codes for free surface simulations by means of a solitary wave. Coast Eng 91:1–17. doi:10.​1016/​j.​coastaleng.​2014.​04.​012 CrossRef
    Zhao, L, Mao J, Bai X et al (2015) Finite element simulation of impulse wave generated by landslides using a three-phase model and the conservative level set method. Landslides 1–12. doi:10.​1007/​s10346-014-0552-3
  • 作者单位:Wei Wang (1) (2)
    Guangqi Chen (1)
    Kunlong Yin (2)
    Yang Wang (2)
    Suhua Zhou (1)
    Yiliang Liu (3)

    1. Department of Civil and Structural Engineering, Kyushu University, Fukuoka, 819-0395, Japan
    2. Faculty of Engineering, China University of Geosciences (Wuhan), Wuhan, 430000, China
    3. Key Laboratory of Geological Hazards on Three Gorges Reservoir Area, China Three Gorges University, Yichang, 443002, China
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:None Assigned
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1866-6299
文摘
The impulsive wave is considered as one of the most notably secondary hazards induced by landslides in reservoir areas. The impulsive wave with considerable wave amplitude is able to cause serious damage to the dam body, shoreline properties and lives. To investigate and predict the wave characteristics, many experimental studies employed the generalized channels rather than the realistic topography. Deviation from the idealized geometries may result in non-negligible effects due to the wave refraction or reflection with complex topography. To consider the topography effect, a prototype scaled experiment was conducted. A series of tests with different collocation of parameters were performed. The experimental results were then summarized to propose empirical equations to predict the maximum wave amplitude, and wave decay in channel direction. The generalized empirical equations can obtain better results for wave features prediction by compared with those derived from the idealized models. Furthermore, a 3D numerical modeling corresponding to the physical experiment was conducted based on the SPH method. The wave characteristics in the sliding and channel directions were investigated in detail including the maximum wave amplitude, wave run-up, wave arrival time and wave crest amplitude decay. The comparison between the simulation and experiment indicates the promising accuracy of the SPH simulation in determining the general features even with complex river topography. Finally, the limitation and applicability of both the experimental and numerical methods in analyzing the practical engineering problems were discussed. Combination of the both methods can benefit the hazard prevention and reduction for landslide generated impulsive waves in reservoir area.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700