Electroluminescence performances of 1,1-bis(4-(N,N-dimethylamino)phenyl)-2,3,4,5-tetraphenylsilole based polymers in three cathode architectures
详细信息    查看全文
  • 作者:ZhiTian Liu (14875) (24875)
    SuJun Hu (14875)
    LinHua Zhang (24875)
    JunWu Chen (14875)
    JunBiao Peng (14875)
    Yong Cao (14875)
  • 关键词:silole ; containing polymers ; N ; N ; dimethylaminobenzene ; polyfluorene ; electroluminescence
  • 刊名:SCIENCE CHINA Chemistry
  • 出版年:2013
  • 出版时间:August 2013
  • 年:2013
  • 卷:56
  • 期:8
  • 页码:1129-1136
  • 全文大小:605KB
  • 参考文献:1. Corey JY. Siloles: Part 1: Synthesis, characterization, and applications. / Adv Organomet Chem, 2011, 59: 1-80 CrossRef
    2. Yamaguchi S, Tamao K. Silole-containing σ- and π-conjugated compounds. / J Chem Soc, Dalton Trans, 1998, 3693-702
    3. Murata H, Malliaras GG, Uchida M, Shen Y, Kafafi ZH. Non-dispersive and air-stable electron transport in an amorphous organic semiconductor. / Chem Phys Lett, 2001, 339: 161-66 CrossRef
    4. Chen JW, Law CCW, Lam JWY, Dong YP, Lo SMF, Williams ID, Zhu DB, Tang BZ. Synthesis, light emission, nanoaggregation, and restricted intramolecular rotation of 1,1-substituted 2,3,4,5-tetraphenylsiloles. / Chem Mater, 2003, 15: 1535-546 CrossRef
    5. Li HK, Mei J, Wang J, Zhang S, Zhao QL, Wei Q, Qin AJ, Sun JZ, Tang BZ. Facile synthesis of poly(aroxycarbonyltriazole)s with aggregation-induced emission characteristics by metal-free click polymerization. / Sci China Chem, 2011, 54: 611-16 CrossRef
    6. Qin AJ, Zhang Y, Han N, Mei J, Sun JZ, Fan WM, Tang BZ. Preparation and self-assembly of amphiphilic polymer with aggregation-induced emission characteristics. / Sci China Chem, 2012, 55: 772-78 CrossRef
    7. Liu JZ, Lam JWY, Tang BZ. Aggregation-induced emission of silole molecules and polymers: fundamental and applications. / J Inorg Organomet Polym, 2009, 19: 249-85 CrossRef
    8. Chen JW, Xu B, Yang KX, Cao Y, Sung HHY, Williams ID, Tang BZ. Photoluminescence spectral reliance on aggregation order of 1,1-bis(2-thienyl)-2,3,4,5-tetraphenylsilole. / J Phys Chem B, 2005, 109: 17086-7093 CrossRef
    9. Wang ZQ, Zheng CJ, Liu H, Ou XM, Zhang XH. Efficient and stable non-doped deep-blue organic light emitting diode based on an anthracene derivative. / Sci China Chem, 2011, 54: 666-70 CrossRef
    10. Zhang J, Yang Y, He C, Li YF. Red-emission organic light-emitting diodes based on solution-processable molecules with triphenylamine core and benzothiadiazole-thiophene arms. / Sci China Chem, 2011, 54: 695-98 CrossRef
    11. Chen HY, Chen JW, Qiu CF, Tang BZ, Wong M, Kwok HS. Efficient and bright OLED based on hexaphenylsilole. / SID Digest, 2003, 509-11
    12. Chen JW, Cao Y. Silole-containing polymers: Chemistry and optoelectronic properties. / Macromol Rapid Commun, 2007, 28: 1714-742 CrossRef
    13. Wang F, Luo J, Chen JW, Huang F, Cao Y. Conjugated random and alternating 2,3,4,5-tetraphenylsilole-containing polyfluorenes: synthesis, characterization, strong solution photoluminescence, and light-emitting diodes. / Polymer, 2005, 46: 8422-429 CrossRef
    14. Liu ZT, Zou JH, Chen JW, Huang L, Peng JB, Cao Y. Largely enhanced LED efficiency of carbazole-fluorene-silole copolymers by using TPBI hole blocking layer. / Polymer, 2008, 49: 1604-610 CrossRef
    15. Usta H, Lu G, Facchetti A, Marks TJ. Dithienosilole- and dibenzosilole-thiophene copolymers as semiconductors for organic thin-film transistors. / J Am Chem Soc, 2006, 128: 9034-035 CrossRef
    16. Li ZG, Zhao XY, Li X, Gao ZQ, Mi BX, Huang W. Organic thin-film solar cells: Devices and materials. / Sci China Chem, 2012, 55: 553-78 CrossRef
    17. Chu TY, Lu JP, Beaupre S, Zhang YG, Pouliot JR, Wakim S, Zhou JY, Leclerc M, Li Z, Ding JP, Tao Y. Bulk heterojunction solar cells using thieno[3,4-c]pyrrole-4,6-dione and dithieno[3,2-b:2-3-d]silole copolymer with a power conversion efficiency of 7.3%. / J Am Chem Soc, 2011, 133: 4250-253 CrossRef
    18. Wang EG, Wang L, Lan L, Luo C, Zhuang WL, Peng JB, Cao Y. High-performance polymer heterojunction solar cells of a polysilafluorene derivative. / Appl Phys Lett, 2008, 92: 033307 CrossRef
    19. Liu Z, Wang L, Chen JW, Wang F, Ouyang XY, Cao Y. Synthesis and optoelectronic properties of silole-containing polyfluorenes with binary structures. / J Polym Sci Part A Polym Chem, 2007, 45: 756-67 CrossRef
    20. Wang F, Luo J, Yang KX, Chen JW, Huang F, Cao Y. Conjugated fluorene and silole copolymers: Synthesis, characterization, electronic transition, light emission, photovoltaic cell, and field effect hole mobility. / Macromolecules, 2005, 38: 2253-260 CrossRef
    21. Liu ZT, Zhou JH, Chen JW, Liu YQ, Peng JB, Cao Y. Highly efficient red light-emitting diodes based on silole-containing polycarbazole. / Acta Polymerica Sinica, 2009, 845-51
    22. Wang F, Wang L, Chen JW, Cao Y. Simple silole-containing polyfluorene for white electroluminescence with simultaneous blue, green, and red emission. / Macromol Rapid Commun, 2007, 28: 2012-018 CrossRef
    23. Zhang K, Liu SJ, Guan X, Duan CH, Zhang J, Zhong CM, Wang L, Huang F, Cao Y. Alkali metal salts doped pluronic block polymers as electron injection/transport layers for high performance polymer light-emitting diodes. / Sci China Chem, 2012, 55: 766-71 CrossRef
    24. Huang F, Wu HB, Wang DL, Yang W, Cao Y. Novel electroluminescent conjugated polyelectrolytes based on polyfluorene. / Chem Mater, 2004, 16: 708-16 CrossRef
    25. Wu HB, Huang F, Peng JB, Cao Y. High-efficiency electron injection cathode of Au for polymer light-emitting devices. / Org Electron, 2005, 6: 118-28 CrossRef
    26. Zhang LJ, He C, Chen JW, Yuan P, Huang L, Zhang C, Cai WZ, Liu ZT, Cao Y. Bulk-heterojunction solar cells with benzotriazole-based copolymers as electron donors: largely improved photovoltaic parameters by using PFN/Al bilayer cathode. / Macromolecules, 2010, 43: 9771-778 CrossRef
    27. He ZC, Zhang C, Xu XF, Zhang LJ, Huang L, Chen JW, Wu HB, Cao Y. Largely enhanced efficiency with PFN/Al bilayer cathode in high efficiency bulk-heterojunction photovoltaic cells with a low bandgap polycarbazole donor. / Adv Mater, 2011, 23: 3086-089 CrossRef
    28. He ZC, Zhong CM, Su SJ, Xu M, Wu HB, Cao Y. Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure. / Nat Photonics, 2012, 6: 591-96
    29. Zhang WS, Lu Ping, Wang ZM, Ma YG. Exploration of structure and mechanism of insoluble gels formed in microwave-assisted Suzuki coupling for poly(9,9-dihexylfluorene)s. / Sci China Chem, 2012, 55: 844-49 CrossRef
    30. Wang M, Li Y, Xie ZY, Wang LX. Polyfluorenes containing pyrazine units: Synthesis, photophysics and electroluminescence. / Sci China Chem, 2011, 54: 656-65 CrossRef
    31. Guo ZS, Liu DA, Wang C, Pei J, Zhou ZL, Zhao LH, Gibson G, Brug J, Lam S, Mao SS. Phosphine oxide-functionalized polyfluorene derivatives: Synthesis, photophysics, electrochemical properties, and electroluminescence performance. / Sci China Chem, 2011, 54: 678-84 CrossRef
  • 作者单位:ZhiTian Liu (14875) (24875)
    SuJun Hu (14875)
    LinHua Zhang (24875)
    JunWu Chen (14875)
    JunBiao Peng (14875)
    Yong Cao (14875)

    14875. State Key Laboratory of Luminescent Materials & Devices, South China University of Technology, Guangzhou, 510640, China
    24875. School of Materials Science & Engineering, Wuhan Institute of Technology, Wuhan, 430073, China
文摘
A new silole monomer with two 4-(N,N-dimethylamino)phenyl substitutions on silicon atom as designed and synthesized. Three copolymers PF-N-HPS1, PF-N-HPS10 and PF-N-HPS20 were then obtained by copolymerizations of 2,7-fluorene derivatives with the silole monomer at feed ratios of 1%, 10%, and 20%. Their UV-vis absorption, electrochemical, photoluminescent, and electroluminescent (EL) properties were investigated. PF-N-HPS possessed HOMO levels of ?.25–?5.58 eV, and showed green emissions. Using PF-N-HPS as the emissive layer, three different polymer light-emitting diodes were fabricated as device A with ITO/PEDOT/PF-N-HPS/Al, device B with ITO/PEDOT/PF-N-HPS/Ba/Al, and device C with ITO/PEDOT/PF-N-HPS/TPBI/Ba/Al. For the device A, PF-N-HPS only showed very low EL efficiency of 0.06-.33 cd/A, indicating that the Al cathode could not inject electron efficiently to the emissive polymers containing the 4-(N,N-dimethylamino)phenyl groups. For the device B, low work function Ba supplied better electron injections, and the EL efficiency could be improved to 0.85-.44 cd/A. TPBI with a deep HOMO level of ?.2 eV could enhance electron transport and hole blocking. Thus modified recombinations and largely elevated EL efficiency of 4.56-.96 cd/A were achieved for the device C. The separation of the emissive layer and metal cathode with the TPBI layer may also suppress exciton quenching at the cathode interface.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700