Structure of the catalytic domain of protein tyrosine phosphatase sigma in the sulfenic acid form
详细信息    查看全文
  • 作者:Tae Jin Jeon (133)
    Pham Ngoc Chien (133)
    Ha-Jung Chun (233)
    Seong Eon Ryu (133)
  • 关键词:crystal structure ; protein tyrosine phosphatase sigma ; proteoglycan ; redox regulation ; sulfenic acid
  • 刊名:Molecules and Cells
  • 出版年:2013
  • 出版时间:July 2013
  • 年:2013
  • 卷:36
  • 期:1
  • 页码:55-61
  • 全文大小:467KB
  • 参考文献:1. Almo, S.C., Bonanno, J.B., Sauder, J.M., Emtage, S., Dilorenzo, T.P., Malashkevich, V., Wasserman, S.R., Swaminathan, S., Eswaramoorthy, S., Agarwal, R., et al. (2007). Structural genomics of protein phosphatases. J. Struct. Funct. Genomics / 8, 121-40. CrossRef
    2. Alonso, A., Sasin, J., Bottini, N., Friedberg, I., Osterman, A., Godzik, A., Hunter, T., Dixon, J., and Mustelin, T. (2004). Protein tyrosine phosphatases in the human genome. Cell / 117, 699-11. CrossRef
    3. Bilwes, A.M., den Hertog, J., Hunter, T., and Noel, J.P. (1996). Structural basis for inhibition of receptor protein-tyrosine phosphatasealpha by dimerization. Nature / 382, 555-59. CrossRef
    4. Blaskovich, M.A. (2009). Drug discovery and protein tyrosine phosphatases. Curr. Med. Chem. / 16, 2095-176. CrossRef
    5. Chiu, J., Tactacan, C.M., Tan, S.X., Lin, R.C., Wouters, M.A., and Dawes, I.W. (2011). Cell cycle sensing of oxidative stress in Saccharomyces cerevisiae by oxidation of a specific cysteine residue in the transcription factor Swi6p. J. Biol. Chem. / 286, 5204-214. CrossRef
    6. Choi, H.J., Kang, S.W., Yang, C.H., Rhee, S.G., and Ryu, S.E. (1998). Crystal structure of a novel human peroxidase enzyme at 2.0 A resolution. Nat. Struct. Biol. / 5, 400-06. CrossRef
    7. Coles, C.H., Shen, Y., Tenney, A.P., Siebold, C., Sutton, G.C., Lu, W., Gallagher, J.T., Jones, E.Y., Flanagan, J.G., and Aricescu, A.R. (2011). Proteoglycan-specific molecular switch for RPTPsigma clustering and neuronal extension. Science / 332, 484-88. CrossRef
    8. Crump, K.E., Juneau, D.G., Poole, L.B., Haas, K.M., and Grayson, J.M. (2012). The reversible formation of cysteine sulfenic acid promotes B-cell activation and proliferation. Eur. J. Immunol. / 42, 2152-164. CrossRef
    9. Elchebly, M., Wagner, J., Kennedy, T.E., Lanctot, C., Michaliszyn, E., Itie, A., Drouin, J., and Tremblay, M.L. (1999). Neuroendocrine dysplasia in mice lacking protein tyrosine phosphatase sigma. Nat. Genet. / 21, 330-33. CrossRef
    10. Emsley, P., Lohkamp, B., Scott, W.G., and Cowtan, K. (2010). Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. / 66, 486-01. CrossRef
    11. Ganguly, A., Sasayama, D., and Cho, H.T. (2012). Regulation of the polarity of protein trafficking by phosphorylation. Mol. Cells / 33, 423-30. CrossRef
    12. Groen, A., Overvoorde, J., van der Wijk, T., and den Hertog, J. (2008). Redox regulation of dimerization of the receptor proteintyrosine phosphatases RPTPalpha, LAR, RPTPmu and CD45. FEBS J. / 275, 2597-604. CrossRef
    13. Jiang, G., den Hertog, J., Su, J., Noel, J., Sap, J., and Hunter, T. (1999). Dimerization inhibits the activity of receptor-like proteintyrosine phosphatase-alpha. Nature / 401, 606-10. CrossRef
    14. Klomsiri, C., Nelson, K.J., Bechtold, E., Soito, L., Johnson, L.C., Lowther, W.T., Ryu, S.E., King, S.B., Furdui, C.M., and Poole, L.B. (2010). Use of dimedone-based chemical probes for sulfenic acid detection evaluation of conditions affecting probe incorporation into redox-sensitive proteins. Methods Enzymol. / 473, 77-4. CrossRef
    15. Lee, C., Lee, S.M., Mukhopadhyay, P., Kim, S.J., Lee, S.C., Ahn, W.S., Yu, M.H., Storz, G., and Ryu, S.E. (2004). Redox regula tion of OxyR requires specific disulfide bond formation involving a rapid kinetic reaction path. Nat. Struct. Mol. Biol. / 11, 1179-185. CrossRef
    16. Liu, W., Wen, W., Wei, Z., Yu, J., Ye, F., Liu, C.H., Hardie, R.C., and Zhang, M. (2011). The INAD scaffold is a dynamic, redoxregulated modulator of signaling in the Drosophila eye. Cell / 145, 1088-101. CrossRef
    17. Nakamura, T., Yamamoto, T., Abe, M., Matsumura, H., Hagihara, Y., Goto, T., Yamaguchi, T., and Inoue, T. (2008). Oxidation of archaeal peroxiredoxin involves a hypervalent sulfur intermediate. Proc. Natl. Acad. Sci. USA / 105, 6238-242. CrossRef
    18. Nam, H.J., Poy, F., Krueger, N.X., Saito, H., and Frederick, C.A. (1999). Crystal structure of the tandem phosphatase domains of RPTP LAR. Cell / 97, 449-57. CrossRef
    19. Nam, H.J., Poy, F., Saito, H., and Frederick, C.A. (2005). Structural basis for the function and regulation of the receptor protein tyrosine phosphatase CD45. J. Exp. Med. / 201, 441-52. CrossRef
    20. Otwinowski, Z., and Minor, W. (1997). Processing of X-ray diffraction data collected in oscillation mode. Methods in Enzymology Vol. 276, Macromolecular Crystallography, part A, C.W. Carter, Jr. and R.M. Sweet, eds. (Academic Press), pp. 307-26. CrossRef
    21. Persson, C., Sjoblom, T., Groen, A., Kappert, K., Engstrom, U., Hellman, U., Heldin, C.H., den Hertog, J., and Ostman, A. (2004). Preferential oxidation of the second phosphatase domain of receptor-like PTP-alpha revealed by an antibody against oxidized protein tyrosine phosphatases. Proc. Natl. Acad. Sci. USA / 101, 1886-891. CrossRef
    22. Piana, S., Lindorff-Larsen, K., Dirks, R.M., Salmon, J.K., Dror, R.O., and Shaw, D.E. (2012). Evaluating the effects of cutoffs and treatment of long-range electrostatics in protein folding simulations. PLoS One / 7, e39918. CrossRef
    23. Ryu, S.E. (2012). Structural mechanism of disulphide bond-mediated redox switches. J. Biochem. / 151, 579-88. CrossRef
    24. Salmeen, A., Andersen, J.N., Myers, M.P., Meng, T.C., Hinks, J.A., Tonks, N.K., and Barford, D. (2003). Redox regulation of protein tyrosine phosphatase 1B involves a sulphenyl-amide intermediate. Nature / 423, 769-73. CrossRef
    25. Salsbury, F.R., Jr., Knutson, S.T., Poole, L.B., and Fetrow, J.S. (2008). Functional site profiling and electrostatic analysis of cysteines modifiable to cysteine sulfenic acid. Protein Sci. / 17, 299-12. CrossRef
    26. Shen, Y., Tenney, A.P., Busch, S.A., Horn, K.P., Cuascut, F.X., Liu, K., He, Z., Silver, J., and Flanagan, J.G. (2009). PTPsigma is a receptor for chondroitin sulfate proteoglycan, an inhibitor of neural regeneration. Science / 326, 592-96. CrossRef
    27. Siu, R., Fladd, C., and Rotin, D. (2007). N-cadherin is an in vivo substrate for protein tyrosine phosphatase sigma (PTPsigma) and participates in PTPsigma-mediated inhibition of axon growth. Mol. Cell. Biol. / 27, 208-19. CrossRef
    28. Sivaramakrishnan, S., Cummings, A.H., and Gates, K.S. (2010). Protection of a single-cysteine redox switch from oxidative destruction: on the functional role of sulfenyl amide formation in the redox-regulated enzyme PTP1B. Bioorg. Med. Chem. Lett. / 20, 444-47. CrossRef
    29. Tabernero, L., Aricescu, A.R., Jones, E.Y., and Szedlacsek, S.E. (2008). Protein tyrosine phosphatases: structure-function relationships. FEBS J. / 275, 867-82. CrossRef
    30. Tonks, N.K. (2005). Redox redux: revisiting PTPs and the control of cell signaling. Cell / 121, 667-70. CrossRef
    31. Tonks, N.K. (2006). Protein tyrosine phosphatases: from genes, to function, to disease. Nat. Rev. Mol. Cell Biol. / 7, 833-46. CrossRef
    32. van Montfort, R.L., Congreve, M., Tisi, D., Carr, R., and Jhoti, H. (2003). Oxidation state of the active-site cysteine in protein tyrosine phosphatase 1B. Nature / 423, 773-77. CrossRef
    33. Wallace, M.J., Batt, J., Fladd, C.A., Henderson, J.T., Skarnes, W., and Rotin, D. (1999). Neuronal defects and posterior pituitary hypoplasia in mice lacking the receptor tyrosine phosphatase PTPsigma. Nat. Genet. / 21, 334-38. CrossRef
    34. Winn, M.D., Ballard, C.C., Cowtan, K.D., Dodson, E.J., Emsley, P., Evans, P.R., Keegan, R.M., Krissinel, E.B., Leslie, A.G.W., McCoy, A., et al. (2011). Overview of the CCP4 suite and current developments. Acta Crystallogr. D Biol. Crystallogr. / 67, 235-42. CrossRef
    35. Yang, J., Groen, A., Lemeer, S., Jans, A., Slijper, M., Roe, S.M., den Hertog, J., and Barford, D. (2007). Reversible oxidation of the membrane distal domain of receptor PTPalpha is mediated by a cyclic sulfenamide. Biochemistry / 46, 709-19. CrossRef
    36. Yoo, S.K., Starnes, T.W., Deng, Q., and Huttenlocher, A. (2011). Lyn is a redox sensor that mediates leukocyte wound attraction / in vivo. Nature / 480, 109-12. CrossRef
    37. Zhou, A., Carrell, R.W., Murphy, M.P., Wei, Z., Yan, Y., Stanley, P.L., Stein, P.E., Broughton Pipkin, F., and Read, R.J. (2010). A redox switch in angiotensinogen modulates angiotensin release. Nature / 468, 108-11. CrossRef
  • 作者单位:Tae Jin Jeon (133)
    Pham Ngoc Chien (133)
    Ha-Jung Chun (233)
    Seong Eon Ryu (133)

    133. Department of Bioengineering, College of Engineering, Hanyang University, Seoul, 133-070, Korea
    233. Department of Radiation Oncology, College of Medicine, Hanyang University, Seoul, 133-070, Korea
  • ISSN:0219-1032
文摘
Protein tyrosine phosphatase sigma (PTPσ) plays a vital role in neural development. The extracellular domain of PTPσ binds to various proteoglycans, which control the activity of 2 intracellular PTP domains (D1 and D2). To understand the regulatory mechanism of PTPσ, we carried out structural and biochemical analyses of PTPσ D1D2. In the crystal structure analysis of a mutant form of D1D2 of PTPσ, we unexpectedly found that the catalytic cysteine of D1 is oxidized to cysteine sulfenic acid, while that of D2 remained in its reduced form, suggesting that D1 is more sensitive to oxidation than D2. This finding contrasts previous observations on PTPα. The cysteine sulfenic acid of D1 was further confirmed by immunoblot and mass spectrometric analyses. The stabilization of the cysteine sulfenic acid in the active site of PTP suggests that the formation of cysteine sulfenic acid may function as a stable intermediate during the redox-regulation of PTPs.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700