Recharging oxidative protein repair: Catalysis by methionine sulfoxide reductases towards their amino acid, protein, and model substrates
详细信息    查看全文
  • 作者:L. Tarrago (1) ltarrago@rics.bwh.harvard.edu
    V. N. Gladyshev (1) vgladyshev@rics.bwh.harvard.edu
  • 关键词:Key words enzyme catalysis – ; methionine oxidation – ; methionine sulfoxide – ; methionine sulfoxide reductase – ; sulfenic acid ; selenenic acid ; protein oxidation – ; oxidative protein repair
  • 刊名:Biochemistry (Moscow)
  • 出版年:2012
  • 出版时间:October 2012
  • 年:2012
  • 卷:77
  • 期:10
  • 页码:1097-1107
  • 全文大小:368.7 KB
  • 参考文献:1. Fukagawa, N. K. (2006) J. Nutr., 136, 1676S–1681S.
    2. Luo, S., and Levine, R. L. (2009) FASEB J., 23, 464–472.
    3. Marino, S. M., and Gladyshev, V. N. (2010) J. Mol. Biol., 404, 902–916.
    4. Kochanczyk, M. (2011) BMC Struct. Biol., 11, 34.
    5. Rhee, S. G., and Woo, H. A. (2011) Antioxid. Redox. Signal., 15, 781–794.
    6. Tanner, J. J., Parsons, Z. D., Cummings, A. H., Zhou, H., and Gates, K. S. (2011) Antioxid. Redox Signal., 15, 77–97.
    7. Lee, B. C., and Gladyshev, V. N. (2011) Free Radic. Biol. Med., 50, 221–227.
    8. Brot, N., Weissbach, L., Werth, J., and Weissbach, H. (1981) Proc. Natl. Acad. Sci. USA, 78, 2155–2158.
    9. Grimaud, R., Ezraty, B., Mitchell, J. K., Lafitte, D., Briand, C., Derrick, P. J., and Barras, F. (2001) J. Biol. Chem., 276, 48915–48920.
    10. Kryukov, G. V., Kumar, R. A., Koc, A., Sun, Z., and Gladyshev, V. N. (2002) Proc. Natl. Acad. Sci. USA, 99, 4245–4250.
    11. Black, S., Harte, E. M., Hudson, B., and Wartofsky, L. (1960) J. Biol. Chem., 235, 2910–2916.
    12. Ejiri, S. I., Weissbach, H., and Brot, N. (1979) J. Bacteriol., 139, 161–164.
    13. Delaye, L., Becerra, A., Orgel, L., and Lazcano, A. (2007) J. Mol. Evol., 64, 15–32.
    14. Zhang, X-H., and Weissbach, H. (2008) Biol. Rev. Camb. Philos. Soc., 83, 249–257.
    15. Tarrago, L., Laugier, E., and Rey, P. (2009) Mol. Plant, 2, 202–217.
    16. Lin, Z., Johnson, L. C., Weissbach, H., Brot, N., Lively, M. O., and Lowther, W. T. (2007) Proc. Natl. Acad. Sci. USA, 104, 9597–9602.
    17. Le, D. T., Lee, B. C., Marino, S. M., Zhang, Y., Fomenko, D. E., Kaya, A., Hacioglu, E., Kwak, G. H., Koc, A., Kim, H. Y., and Gladyshev, V. N. (2009) J. Biol. Chem., 284, 4354–4364.
    18. Ezraty, B., Bos, J., Barras, F., and Aussel, L. (2005) J. Bacteriol., 187, 231–237.
    19. St John, G., Brot, N., Ruan, J., Erdjument-Bromage, H., Tempst, P., Weissbach, H., and Nathan, C. (2001) Proc. Natl. Acad. Sci. USA, 98, 9901–9906.
    20. Alamuri, P., and Maier, R. J. (2004) Mol. Microbiol., 53, 1397–1406.
    21. Lee, W. L., Gold, B., Darby, C., Brot, N., Jiang, X., de Carvalho, L. P., Wellner, D., St John, G., Jacobs, W. R., Jr., and Nathan, C. (2009) Mol. Microbiol., 71, 583–593.
    22. Koc, A., Gasch, A. P., Rutherford, J. C., Kim, H-Y., and Gladyshev, V. N. (2004) Proc. Natl. Acad. Sci. USA, 101, 7999–8004.
    23. Kaya, A., Koc, A., Lee, B. C., Fomenko, D. E., Rederstorff, M., Krol, A., Lescure, A., and Gladyshev, V. N. (2010) Biochemistry, 49, 8618–8625.
    24. Minniti, A. N., Cataldo, R., Trigo, C., Vasquez, L., Mujica, P., Leighton, F., Inestrosa, N. C., and Aldunate, R. (2009) Aging Cell, 8, 690–705.
    25. Zhang, C., Jia, P., Jia, Y., Weissbach, H., Webster, K. A., Huang, X., Lemanski, S. L., Achary, M., and Lemanski, L. F. (2010) J. Cell Biochem., 111, 94–103.
    26. Romero, H. M., Berlett, B. S., Jensen, P. J., Pell, E. J., and Tien, M. (2004) Plant Physiol., 136, 3784–3794.
    27. Guo, X., Wu, Y., Wang, Y., Chen, Y., and Chu, C. (2009) Planta, 230, 227–238.
    28. Ruan, H., Tang, X. D., Chen, M. L., Joiner, M. L., Sun, G., Brot, N., Weissbach, H., Heinemann, S. H., Iverson, L., Wu, C. F., and Hoshi, T. (2002) Proc. Natl. Acad. Sci. USA, 99, 2748–2753.
    29. Picot, C. R., Petropoulos, I., Perichon, M., Moreau, M., Nizard, C., and Friguet, B. (2005) Free Radic. Biol. Med., 39, 1332–1341.
    30. Haenold, R., Wassef, R., Brot, N., Neugebauer, S., Leipold, E., Heinemann, S. H., and Hoshi, T. (2008) Free Radic. Res., 42, 978–988.
    31. Kwon, S. J., Kwon, S. I., Bae, M. S., Cho, E. J., and Park, O. K. (2007) Plant Cell. Physiol., 48, 1713–1723.
    32. Laugier, E., Tarrago, L., Vieira Dos Santos, C., Eymery, F., Havaux, M., and Rey, P. (2010) Plant J., 61, 271–282.
    33. Cabreiro, F., Picot, C. R., Friguet, B., and Petropoulos, I. (2006) Ann. N. Y. Acad. Sci., 1067, 37–44.
    34. Koc, A., and Gladyshev, V. N. (2007) Ann. N. Y. Acad. Sci., 1100, 383–386.
    35. Shchedrina, V. A., Vorbruggen, G., Lee, B. C., Kim, H. Y., Kabil, H., Harshman, L. G., and Gladyshev, V. N. (2009) Mech. Ageing Dev., 130, 429–443.
    36. Achilli, C., Ciana, A., Rossi, A., Balduini, C., and Minetti, G. (2008) J. Leukoc. Biol., 83, 181–189.
    37. Rosen, H., Klebanoff, S. J., Wang, Y., Brot, N., Heinecke, J. W., and Fu, X. (2009) Proc. Natl. Acad. Sci. USA, 106, 18686–18691.
    38. Mahawar, M., Tran, V., Sharp, J. S., and Maier, R. J. (2011) J. Biol. Chem., 286, 19159–19169.
    39. Lowther, W. T., Weissbach, H., Etienne, F., Brot, N., and Matthews, B. W. (2002) Nat. Struct. Biol., 9, 348–352.
    40. Kim, H-Y., Fomenko, D. E., Yoon, Y-E., and Gladyshev, V. N. (2006) Biochemistry, 45, 13697–13704.
    41. Boschi-Muller, S., Azza, S., Sanglier-Cianferani, S., Talfournier, F., Van Dorsselear, A., and Branlant, G. (2000) J. Biol. Chem., 275, 35908–35913.
    42. Antoine, M., Gand, A., Boschi-Muller, S., and Branlant, G. (2006) J. Biol. Chem., 281, 39062–39070.
    43. Boschi-Muller, S., Gand, A., and Branlant, G. (2008) Arch. Biochem. Biophys., 474, 266–273.
    44. Lowther, W. T., Brot, N., Weissbach, H., and Matthews, B. W. (2000) Biochemistry, 39, 13307–13312.
    45. Tete-Favier, F., Cobessi, D., Boschi-Muller, S., Azza, S., Branlant, G., and Aubry, A. (2000) Structure, 8, 1167–1178.
    46. Taylor, A. B., Benglis, D. M., Jr., Dhandayuthapani, S., and Hart, P. J. (2003) J. Bacteriol., 185, 4119–4126.
    47. Rouhier, N., Kauffmann, B., Tete-Favier, F., Palladino, P., Gans, P., Branlant, G., Jacquot, J. P., and Boschi-Muller, S. (2007) J. Biol. Chem., 282, 3367–3378.
    48. Ranaivoson, F. M., Antoine, M., Kauffmann, B., Boschi-Muller, S., Aubry, A., Branlant, G., and Favier, F. (2008) J. Mol. Biol., 377, 268–280.
    49. Lim, J. C., You, Z., Kim, G., and Levine, R. L. (2011) Proc. Natl. Acad. Sci. USA, 108, 10472–10477.
    50. Kim, H-Y., and Gladyshev, V. N. (2005) PLoS Biol., 3, e375.
    51. Robinet, J. J., Dokainish, H. M., Paterson, D. J., and Gauld, J. W. (2011) J. Phys. Chem. B, 115, 9202–9212.
    52. Neiers, F., Sonkaria, S., Olry, A., Boschi-Muller, S., and Branlant, G. (2007) J. Biol. Chem., 282, 32397–32405.
    53. Neiers, F., Boschi-Muller, S., and Branlant, G. (2011) J. Phys. Chem. B, 115, 10775; 10776–10777.
    54. Carella, M., Becher, J., Ohlenschlager, O., Ramachandran, R., Guhrs, K. H., Wellenreuther, G., Meyer-Klaucke, W., Heinemann, S. H., and Gorlach, M. (2011) Mol. Microbiol., 79, 342–358.
    55. Tarrago, L., Laugier, E., Zaffagnini, M., Marchand, C., Le Marechal, P., Rouhier, N., Lemaire, S. D., and Rey, P. (2009) J. Biol. Chem., 284, 18963–18971.
    56. Tarrago, L., Laugier, E., Zaffagnini, M., Marchand, C. H., Le Marechal, P., Lemaire, S. D., and Rey, P. (2010) J. Biol. Chem., 285, 14964–14972.
    57. Kumar, R. A., Koc, A., Cerny, R. L., and Gladyshev, V. N. (2002) J. Biol. Chem., 277, 37527–37535.
    58. Ma, X. X., Guo, P. C., Shi, W. W., Luo, M., Tan, X. F., Chen, Y., and Zhou, C. Z. (2011) J. Biol. Chem., 286, 13430–13437.
    59. Tarrago, L., Kaya, A., Weerapana, E., Marino, S. M., and Gladyshev, V. N. (2012) J. Biol. Chem., 287, 24448–24459.
    60. Olry, A., Boschi-Muller, S., and Branlant, G. (2004) Biochemistry, 43, 11616–11622.
    61. Gladyshev, V. N. (2002) Proteins, 46, 149–152.
    62. Boschi-Muller, S., Azza, S., and Branlant, G. (2001) Protein Sci., 10, 2272–2279.
    63. Kim, H-Y. (2012) Acta Biochim. Biophys. Sin., 44, 623–627.
    64. Flohe, L., Toppo, S., Cozza, G., and Ursini, F. (2011) Antioxid. Redox Signal., 15, 763–780.
    65. Boschi-Muller, S., Olry, A., Antoine, M., and Branlant, G. (2005) Biochim. Biophys. Acta, 1703, 231–238.
    66. Neiers, F., Kriznik, A., Boschi-Muller, S., and Branlant, G. (2004) J. Biol. Chem., 279, 42462–42468.
    67. Chibani, K., Tarrago, L., Gualberto, J. M., Wingsle, G., Rey, P., Jacquot, J. P., and Rouhier, N. (2012) Plant Physiol., 159, 592–605.
    68. Ding, D., Sagher, D., Laugier, E., Rey, P., Weissbach, H., and Zhang, X. H. (2007) Biochem. Biophys. Res. Commun., 361, 629–633.
    69. Kim, H-Y., and Kim, J-R. (2008) Biochem. Biophys. Res. Commun., 371, 490–494.
    70. Bong, S. M., Kwak, G. H., Moon, J. H., Lee, K. S., Kim, H. S., Kim, H. Y., and Chi, Y. M. (2010) J. Biol. Chem., 285, 25044–25052.
    71. Gruez, A., Libiad, M., Boschi-Muller, S., and Branlant, G. (2010) J. Biol. Chem., 285, 25033–25043.
    72. Ritz, D., and Beckwith, J. (2001) Annu. Rev. Microbiol., 55, 21–48.
    73. Jacob, C., Kriznik, A., Boschi-Muller, S., and Branlant, G. (2011) FEBS Lett., 585, 1905–1909.
    74. Mouaheb, N., Thomas, D., Verdoucq, L., Monfort, P., and Meyer, Y. (1998) Proc. Natl. Acad. Sci. USA, 95, 3312–3317.
    75. Lemaire, S. D., Guillon, B., Le Marechal, P., Keryer, E., Miginiac-Maslow, M., and Decottignies, P. (2004) Proc. Natl. Acad. Sci. USA, 101, 7475–7480.
    76. Motohashi, K., Kondoh, A., Stumpp, M. T., and Hisabori, T. (2001) Proc. Natl. Acad. Sci. USA, 98, 11224–11229.
    77. Rey, P., Cuine, S., Eymery, F., Garin, J., Court, M., Jacquot, J. P., Rouhier, N., and Broin, M. (2005) Plant J., 41, 31–42.
    78. Montrichard, F., Alkhalfioui, F., Yano, H., Vensel, W. H., Hurkman, W. J., and Buchanan, B. B. (2009) J. Prot., 72, 452–474.
    79. Ezraty, B., Aussel, L., and Barras, F. (2005) Biochim. Biophys. Acta, 1703, 221–229.
    80. Vieira Dos Santos, C., Laugier, E., Tarrago, L., Massot, V., Issakidis-Bourguet, E., Rouhier, N., and Rey, P. (2007) FEBS Lett., 581, 4371–4376.
    81. Stewart, E. J., Aslund, F., and Beckwith, J. (1998) EMBO J., 17, 5543–5550.
    82. Ezraty, B., Grimaud, R., El Hassouni, M., Moinier, D., and Barras, F. (2004) EMBO J., 23, 1868–1877.
    83. Vieira Dos Santos, C., Cuine, S., Rouhier, N., and Rey, P. (2005) Plant Physiol., 138, 909–922.
    84. Olry, A., Boschi-Muller, S., Marraud, M., Sanglier-Cianferani, S., Van Dorsselear, A., and Branlant, G. (2002) J. Biol. Chem., 277, 12016–12022.
    85. Chibani, K., Tarrago, L., Schurmann, P., Jacquot, J.-P., and Rouhier, N. (2011) FEBS Lett., 585, 1077–1081.
    86. Couturier, J., Stroher, E., Albetel, A. N., Roret, T., Muthuramalingam, M., Tarrago, L., Seidel, T., Tsan, P., Jacquot, J. P., Johnson, M. K., Dietz, K. J., Didierjean, C., and Rouhier, N. (2011) J. Biol. Chem., 286, 27515–27527.
    87. Trujillo, M., Ferrer-Sueta, G., Thomson, L., Flohe, L., and Radi, R. (2007) Subcell. Biochem., 44, 83–113.
    88. Xiong, Y., Chen, B., Smallwood, H. S., Urbauer, R. J., Markille, L. M., Galeva, N., Williams, T. D., and Squier, T. C. (2006) Biochemistry, 45, 14642–14654.
    89. Tarrago, L., Kieffer-Jaquinod, S., Lamant, T., Marcellin, M. N., Garin, J. R., Rouhier, N., and Rey, P. (2012) Antioxid. Redox Signal., 16, 79–84.
    90. Lee, B. C., Fomenko, D. E., and Gladyshev, V. N. (2011) ACS Chem. Biol., 6, 1029–1035.
    91. Lee, B. C., Le, D. T., and Gladyshev, V. N. (2008) J. Biol. Chem., 283, 28361–28369.
    92. Ranaivoson, F. M., Neiers, F., Kauffmann, B., Boschi-Muller, S., Branlant, G., and Favier, F. (2009) J. Mol. Biol., 394, 83–93.
    93. Aachmann, F. L., Kwak, G. H., Del Conte, R., Kim, H. Y., Gladyshev, V. N., and Dikiy, A. (2011) Proteins, 79, 3123–3131.
    94. Aachmann, F. L., Sal, L. S., Kim, H. Y., Marino, S. M., Gladyshev, V. N., and Dikiy, A. (2010) J. Biol. Chem., 285, 33315–33323.
    95. Ghesquiere, B., Jonckheere, V., Colaert, N., Van Durme, J., Timmerman, E., Goethals, M., Schymkowitz, J., Rousseau, F., Vandekerckhove, J., and Gevaert, K. (2011) Mol. Cell. Proteomics, 10, M110.006866.
    96. Kim, G., Cole, N. B., Lim, J. C., Zhao, H., and Levine, R. L. (2010) J. Biol. Chem., 285, 18085–18094.
    97. Lim, J. C., Gruschus, J. M., Ghesquiere, B., Kim, G., Piszczek, G., Tjandra, N., and Levine, R. L. (2012) J. Biol. Chem., 287, 25589–25595.
  • 作者单位:1. Brigham and Women鈥檚 Hospital and Harvard Medical School, 77 Ave. Louis Pasteur, Boston, MA 02115, USA
  • ISSN:1608-3040
文摘
The sulfur-containing amino acid methionine (Met) in its free and amino acid residue forms can be readily oxidized to the R and S diastereomers of methionine sulfoxide (MetO). Methionine sulfoxide reductases A (MSRA) and B (MSRB) reduce MetO back to Met in a stereospecific manner, acting on the S and R forms, respectively. A third MSR type, fRMSR, reduces the R form of free MetO. MSRA and MSRB are spread across the three domains of life, whereas fRMSR is restricted to bacteria and unicellular eukaryotes. These enzymes protect against abiotic and biotic stresses and regulate lifespan. MSRs are thiol oxidoreductases containing catalytic redox-active cysteine or selenocysteine residues, which become oxidized by the substrate, requiring regeneration for the next catalytic cycle. These enzymes can be classified according to the number of redox-active cysteines (selenocysteines) and the strategies to regenerate their active forms by thioredoxin and glutaredoxin systems. For each MSR type, we review catalytic parameters for the reduction of free MetO, low molecular weight MetO-containing compounds, and oxidized proteins. Analysis of these data reinforces the concept that MSRAs reduce various types of MetO-containing substrates with similar efficiency, whereas MSRBs are specialized for the reduction of MetO in proteins.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700