Influence of Sulfolane on ESI-MS Measurements of Protein–Ligand Affinities
详细信息    查看全文
  • 作者:Yuyu Yao ; Michele R. Richards…
  • 关键词:Supercharging ; ESI ; MS ; Protein–ligand affinities ; Liquid sample DESI ; MS
  • 刊名:Journal of The American Society for Mass Spectrometry
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:27
  • 期:3
  • 页码:498-506
  • 全文大小:527 KB
  • 参考文献:1.Cubrilovic, D., Biela, A., Sielaff, F., Steinmetzer, T., Klebe, G., Zenobi, R.: Quantifying Protein-ligand binding constants using electrospray ionization mass spectrometry: a systematic binding affinity study of a series of hydrophobically modified trypsin inhibitors. J. Am. Soc. Mass Spectrom. 23, 1768–1777 (2012)CrossRef
    2.El-Hawiet, A., Shoemaker, G.K., Daneshfar, R., Kitova, E.N., Klassen, J.S.: Applications of a catch and release electrospray ionization mass spectrometry assay for carbohydrate library screening. Anal. Chem. 84, 50–58 (2011)CrossRef
    3.Han, L., Kitov, P.I., Kitova, E.N., Tan, M., Wang, L., Xia, M., Jiang, X., Klassen, J.S.: Affinities of recombinant norovirus p dimers for human blood group antigens. Glycobiology 23, 276–285 (2013)CrossRef
    4.Kitova, E.N., El-Hawiet, A., Klassen, J.S.: Screening carbohydrate libraries for protein interactions using the direct esi-ms assay. Applications to libraries of unknown concentration. J. Am. Soc. Mass Spectrom. 25, 1908–1916 (2014)CrossRef
    5.Kitova, E.N., Bundle, D.R., Klassen, J.S.: Thermal dissociation of protein–oligosaccharide complexes in the gas phase: mapping the intrinsic intermolecular interactions. J. Am. Chem. Soc. 124, 5902–5913 (2002)CrossRef
    6.Kitova, E.N., Bundle, D.R., Klassen, J.S.: Partitioning of solvent effects and intrinsic interactions in biological recognition. Angew. Chem. Int. Ed. 43, 4183–4186 (2004)CrossRef
    7.Liu, L., Bagal, D., Kitova, E.N., Schnier, P.D., Klassen, J.S.: Hydrophobic protein−ligand interactions preserved in the gas phase. J. Am. Chem. Soc. 131, 15980–15981 (2009)CrossRef
    8.Liu, L., Michelsen, K., Kitova, E.N., Schnier, P.D., Klassen, J.S.: Evidence that water can reduce the kinetic stability of protein−hydrophobic ligand interactions. J. Am. Chem. Soc. 132, 17658–17660 (2010)CrossRef
    9.Liu, L., Michelsen, K., Kitova, E.N., Schnier, P.D., Klassen, J.S.: Energetics of lipid binding in a hydrophobic protein cavity. J. Am. Chem. Soc. 134, 3054–3060 (2012)CrossRef
    10.Deng, L., Broom, A., Kitova, E.N., Richards, M.R., Zheng, R.B., Shoemaker, G.K., Meiering, E.M., Klassen, J.S.: Kinetic stability of the streptavidin–biotin interaction enhanced in the gas phase. J. Am. Chem. Soc. 134, 16586–16596 (2012)CrossRef
    11.Haselmann, K.F., Jørgensen, T.J.D., Budnik, B.A., Jensen, F., Zubarev, R.A.: Electron capture dissociation of weakly bound polypeptide polycationic complexes. Rapid Commun. Mass Spectrom. 16, 2260–2265 (2002)CrossRef
    12.Yin, S., Loo, J.A.: Top-down mass spectrometry of supercharged native protein–ligand complexes. Int. J. Mass Spectrom. 300, 118–122 (2011)CrossRef
    13.Jackson, S.N., Dutta, S., Woods, A.S.: The use of ECD/ETD to identify the site of electrostatic interaction in noncovalent complexes. J. Am. Soc. Mass Spectrom. 20, 176–179 (2009)CrossRef
    14.Muller, L., Jackson, S.N., Woods, A.S.: ETD and sequential ETD localize the residues involved in D2-A2A heteromerization. RSC Adv 4, 42272–42277 (2014)CrossRef
    15.Xie, Y., Zhang, J., Yin, S., Loo, J.A.: Top-down ESI-ECD-FT-ICR mass spectrometry localizes noncovalent protein-ligand binding sites. J. Am. Chem. Soc. 128, 14432–14433 (2006)CrossRef
    16.Yin, S., Loo, J.A.: Elucidating the site of protein-ATP binding by top-down mass spectrometry. J. Am. Soc. Mass Spectrom. 21, 899–907 (2010)CrossRef
    17.Clarke, D.J., Murray, E., Hupp, T., Mackay, C.L., Langridge-Smith, P.R.: Mapping a noncovalent protein-peptide interface by top-down FTICR mass spectrometry using electron capture dissociation. J. Am. Soc. Mass Spectrom. 22, 1432–1440 (2011)CrossRef
    18.Ledvina, A.R., McAlister, G.C., Gardner, M.W., Smith, S.I., Madsen, J.A., Schwartz, J.C., Stafford Jr., G.C., Syka, J.E.P., Brodbelt, J.S., Coon, J.J.: Infrared photo-activation reduces peptide folding and hydrogen atom migration following ETD tandem mass spectrometry. Angew. Chem. Int. Ed. Engl. 48, 8526–8528 (2009)CrossRef
    19.Swaney, D.L., McAlister, G.C., Wirtala, M., Schwartz, J.C., Syka, J.E.P., Coon, J.J.: Supplemental activation method for high-efficiency electron-transfer dissociation of doubly protonated peptide precursors. Anal. Chem. 79, 477–485 (2007)CrossRef
    20.Horn, D.M., Breuker, K., Frank, A.J., McLafferty, F.W.: Kinetic intermediates in the folding of gaseous protein ions characterized by electron capture dissociation mass spectrometry. J. Am. Chem. Soc. 123, 9792–9799 (2001)CrossRef
    21.Gorshkov, M.V., Masselon, C.D., Nikolaev, E.N., Udseth, H.R., Paša-Tolić, L., Smith, R.D.: Considerations for electron capture dissociation efficiency in FTICR mass spectrometry. Int. J. Mass Spectrom. 234, 131–136 (2004)CrossRef
    22.Zenaidee, M.A., Donald, W.A.: Extremely supercharged proteins in mass spectrometry: profiling the ph of electrospray generated droplets, narrowing charge state distributions, and increasing ion fragmentation. Analyst 140, 1894–1905 (2015)CrossRef
    23.Iavarone, A.T., Jurchen, J.C., Williams, E.R.: Supercharged protein and peptide ions formed by electrospray ionization. Anal. Chem. 73, 1455–1460 (2001)CrossRef
    24.Lomeli, S.H., Yin, S., Ogorzalek Loo, R.R., Loo, J.A.: Increasing charge while preserving noncovalent protein complexes for ESI-MS. J. Am. Soc. Mass Spectrom. 20, 593–596 (2009)CrossRef
    25.Sterling, H.J., Williams, E.R.: Origin of supercharging in electrospray ionization of noncovalent complexes from aqueous solution. J. Am. Soc. Mass Spectrom. 20, 1933–1943 (2009)CrossRef
    26.Lomeli, S.H., Peng, I.X., Yin, S., Ogorzalek Loo, R.R., Loo, J.A.: New reagents for increasing ESI multiple charging of proteins and protein complexes. J. Am. Soc. Mass Spectrom. 21, 127–131 (2010)CrossRef
    27.Sterling, H.J., Daly, M.P., Feld, G.K., Thoren, K.L., Kintzer, A.F., Krantz, B.A., Williams, E.R.: Effects of supercharging reagents on noncovalent complex structure in electrospray ionization from aqueous solutions. J. Am. Soc. Mass Spectrom. 21, 1762–1774 (2010)
    28.Iavarone, A.T., Williams, E.R.: Mechanism of charging and supercharging molecules in electrospray ionization. J. Am. Chem. Soc. 125, 2319–2327 (2003)CrossRef
    29.Hogan Jr., C.J., Ogorzalek Loo, R.R., Loo, J.A., Fernández de la Mora, J.: Ion mobility-mass spectrometry of phosphorylase B ions generated with supercharging reagents but in charge-reducing buffer. Phys. Chem. Chem. Phys. 12, 13476–13483 (2010)CrossRef
    30.Ogorzalek Loo, R.R., Lakshmanan, R.L., Loo, J.A.: What protein charging (and supercharging) reveal about the mechanism of electrospray ionization. J. Am. Soc. Mass Spectrom. 25, 1675–1693 (2014)CrossRef
    31.Liu, P., Zhang, J., Ferguson, C.N., Chen, H., Loo, J.A.: Measuring protein–ligand interactions using liquid sample desorption electrospray ionization mass spectrometry. Anal. Chem. 85, 11966–11972 (2013)CrossRef
    32.Zdanov, A., Li, Y., Bundle, D.R., Deng, S.J., MacKenzie, C.R., Narang, S.A., Young, N.M., Cygler, M.: Structure of a single-chain antibody variable domain (Fv) fragment complexed with a carbohydrate antigen at 1.7-A resolution. Proc. Natl. Acad. Sci. 91, 6423–6427 (1994)CrossRef
    33.Rademacher, C., Shoemaker, G.K., Kim, H.-S., Zheng, R.B., Taha, H., Liu, C., Nacario, R.C., Schriemer, D.C., Klassen, J.S., Peters, T., Lowary, T.L.: Ligand specificity of CS-35, a monoclonal antibody that recognizes mycobacterial lipoarabinomannan: a model system for oligofuranoside−protein recognition. J. Am. Chem. Soc. 129, 10489–10502 (2007)CrossRef
    34.Yao, Y., Shams-Ud-Doha, K., Daneshfar, R., Kitova, E.N., Klassen, J.S.: Quantifying protein–carbohydrate interactions using liquid sample desorption electrospray ionization mass spectrometry. J. Am. Soc. Mass Spectrom. 26, 98–106 (2015)CrossRef
    35.Hwang, T.L., Shaka, A.J.: Cross relaxation without TOCSY: transverse rotating-frame overhauser effect spectroscopy. J. Am. Chem. Soc. 114, 3157–3159 (1992)CrossRef
    36.Wang, W., Kitova, E.N., Klassen, J.S.: Influence of solution and gas phase processes on protein−carbohydrate binding affinities determined by nanoelectrospray fourier transform ion cyclotron resonance mass spectrometry. Anal. Chem. 75, 4945–4955 (2003)CrossRef
    37.Wang, W., Kitova, E.N., Klassen, J.S.: Nonspecific Protein−Carbohydrate complexes produced by nanoelectrospray ionization. Factors influencing their formation and stability. Anal. Chem. 77, 3060–3071 (2005)CrossRef
    38.Sun, J., Kitova, E.N., Wang, W., Klassen, J.S.: Method for distinguishing specific from nonspecific protein−ligand complexes in nanoelectrospray ionization mass spectrometry. Anal. Chem. 78, 3010–3018 (2006)CrossRef
    39.Turnbull, W.B., Precious, B.L., Homans, S.W.: Dissecting the cholera toxin–ganglioside GM1 interaction by isothermal titration calorimetry. J. Am. Chem. Soc. 126, 1047–1054 (2004)CrossRef
    40.Lin, H., Kitova, E.N., Klassen, J.S.: Measuring positive cooperativity using the direct ESI-MS assay. cholera toxin B subunit homopentamer binding to GM1 pentasacharide. J. Am. Soc. Mass Spectrom. 25, 104–110 (2014)CrossRef
    41.Schindler, M., Assaf, Y., Sharon, N., Chipman, D.M.: Mechanism of lysozyme catalysis: role of ground-state strain in subsite D in hen egg-white and human lysozymes. Biochemistry 16, 423–431 (1977)CrossRef
    42.Veros, C.T., Oldham, N.J.: Quantitative determination of lysozyme-ligand binding in the solution and gas phases by electrospray ionisation mass spectrometry. Rapid Commun. Mass Spectrom. 21, 3505–3510 (2007)CrossRef
    43.Douglass, K.A., Venter, A.R.: Investigating the role of adducts in protein supercharging with sulfolane. J. Am. Soc. Mass Spectrom. 23, 489–497 (2012)CrossRef
    44.Daneshfar, R., Kitova, E.N., Klassen, J.S.: Determination of protein-ligand association thermochemistry using variable-temperature nanoelectrospray mass spectrometry. J. Am. Chem. Soc. 126, 4786–4787 (2004)CrossRef
    45.Hirabayashi, J., Hashidate, T., Arata, Y., Nishi, N., Nakamura, T., Hirashima, M., Urashima, T., Oka, T., Futai, M., Muller, W.E.G., Yagi, F., Kasai, K.: Oligosaccharide specificity of galectins: a search by frontal affinity chromatography. Biochim. Biophys. Acta 1572, 232–254 (2002)CrossRef
    46.Phillips, D.C.: The hen egg-white lysozyme molecule. Proc. Natl. Acad. Sci. 57, 483–495 (1967)CrossRef
    47.Holzwarth, G., Doty, P.: The ultraviolet circular dichroism of polypeptides. J. Am. Chem. Soc. 87, 218–228 (1965)CrossRef
    48.Greenfield, N., Fasman, G.D.: Computed circular dichroism spectra for the evaluation of protein comformation. Biochemistry 8, 4108–4116 (1969)CrossRef
    49.Venyaminov, S., Baikalov, I.A., Shen, Z.M., Wu, C.S., Yang, J.T.: Circular dichroic analysis of denatured proteins: inclusion of denatured proteins in the reference set. Anal. Biochem. 214, 17–24 (1993)CrossRef
    50.Griebenow, K., Klibanov, A.M.: On Protein Denaturation in Aqueous-Organic Mixtures but Not in Pure Organic Solvents. J. Am. Soc. Chem.  118, 11695–11700 (1996)
    51.Redfield, C., Dobson, C.M.: Sequential 1H NMR assignments and secondary structure of hen egg white lysozyme in solution. Biochemistry 27, 122–136 (1988)CrossRef
    52.Buck, M., Boyd, J., Redfield, C., MacKenzie, D.A., Jeenes, D.J., Archer, D.B., Dobson, C.M.: Structural determinants of protein dynamics: analysis of 15N NMR relaxation measurements for main-chain and side-chain nuclei of hen egg white lysozyme. Biochemistry 34, 4041–4055 (1995)CrossRef
    53.Strynadka, N.C.J., James, M.N.G.: Lysozyme revisited: crystallographic evidence for distortion of an N-acetylmuramic acid residue bound in site D. J. Mol. Biol. 220, 401–424 (1991)CrossRef
    54.Cheetham, J.C., Artymiuk, P.J., Phillips, D.C.: Refinement of an enzyme complex with inhibitor bound at partial occupancyl hen egg-white lysozyme and tri-N-acetylchitotriose at 1.75 Å resolution. J. Mol. Biol. 224, 613–628 (1992)CrossRef
    55.Hadfield, A.T., Harvey, D.J., Archer, D.B., MacKenzie, D.A., Jeenes, D.J., Radford, S.E., Lowe, G., Dobson, C.M., Johnson, L.N.: Crystal structure of the mutant D52S hen egg white lysozyme with an oligosaccharide product. J. Mol. Biol. 243, 856–872 (1994)CrossRef
    56.Moorman, V.R., Valentine, K.G., Wand, A.J.: The dynamical response of hen egg white lysozyme to the binding of a carbohydrate ligand. Protein Sci. 21, 1066–1073 (2012)CrossRef
    57.Blundell, C.D., DeAngelis, P.L., Day, A.J., Almond, A.: Use of 15N-NMR to resolve molecular details in isotopically-enriched carbohydrates: sequence-specific observations in hyaluronan oligmers up to decasaccharides. Glycobiology 14, 999–1009 (2004)CrossRef
    58.Bates, R.G., Pawlak, Z.: Solvent effects on acid-base behavior: five uncharged acids in water-sulfolane solvents. J Sol Chem 5, 213–222 (1976)CrossRef
    59.DeMuth, J.C., McLuckey, S.A.: Electrospray droplet exposure to organic vapors: metal ion removal from proteins and protein complexes. Anal. Chem. 87, 1210–1218 (2015)CrossRef
    60.Hopper, J.T.S., Sokratous, K., Oldham, N.J.: Charge state and adduct reduction in electrospray ionization-mass spectrometry using solvent vapor exposure. Anal. Biochem. 421, 788–790 (2012)CrossRef
    61.Hunter, E.P., Lias, S.G.: Evaluated gas phase basicities and proton affinities of molecules: an update. J. Phys. Chem. Ref. Data 27, 413–656 (1998)CrossRef
  • 作者单位:Yuyu Yao (1)
    Michele R. Richards (1)
    Elena N. Kitova (1)
    John S. Klassen (1)

    1. Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
  • 刊物主题:Analytical Chemistry; Biotechnology; Organic Chemistry; Proteomics; Bioinformatics;
  • 出版者:Springer US
  • ISSN:1879-1123
文摘
The results of an investigation into the influence of sulfolane, a commonly used supercharging agent, on electrospray ionization mass spectrometry (ESI-MS) measurements of protein–ligand affinities are described. Binding measurements carried out on four protein–carbohydrate complexes, lysozyme with β-d-GlcNAc-(1→4)-β-d-GlcNAc-(1→4)-β-d-GlcNAc-(1→4)-d-GlcNAc, a single chain variable fragment and α-d-Gal-(1→2)-[α-d-Abe-(1→3)]-α-d-Man-OCH3, cholera toxin B subunit homopentamer with β-d-Gal-(1→3)-β-d-GalNAc-(1→4)[α-d-Neu5Ac-(2→3)]-β-d-Gal-(1→4)-β-d-Glc, and a fragment of galectin 3 and α-l-Fuc-(1→2)-β-d-Gal-(1→3)-β-d-GlcNAc-(1→3)-β-d-Gal-(1→4)-β-d-Glc, revealed that sulfolane generally reduces the apparent (as measured by ESI-MS) protein–ligand affinities. To establish the origin of this effect, a detailed study was undertaken using the lysozyme–tetrasaccharide interaction as a model system. Measurements carried out using isothermal titration calorimetry (ITC), circular dichroism, and nuclear magnetic resonance spectroscopies reveal that sulfolane reduces the binding affinity in solution but does not cause any significant change in the higher order structure of lysozyme or to the intermolecular interactions. These observations confirm that changes to the structure of lysozyme in bulk solution are not responsible for the supercharging effect induced by sulfolane. Moreover, the agreement between the ESI-MS and ITC-derived affinities indicates that there is no dissociation of the complex during ESI or in the gas phase (i.e., in-source dissociation). This finding suggests that supercharging of lysozyme by sulfolane is not related to protein unfolding during the ESI process. Binding measurements performed using liquid sample desorption ESI-MS revealed that protein supercharging with sulfolane can be achieved without a reduction in affinity.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700