Nicosulfuron application in agricultural soils drives the selection towards NS-tolerant microorganisms harboring various levels of sensitivity to nicosulfuron
详细信息    查看全文
  • 作者:Ines Petric ; Dimitrios G Karpouzas…
  • 关键词:Agricultural soil ; Sulfonylurea herbicides ; Nicosulfuron ; Ecotoxicology ; Microbial community ; Tolerant bacteria ; AHAS enzyme
  • 刊名:Environmental Science and Pollution Research
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:23
  • 期:5
  • 页码:4320-4333
  • 全文大小:1,195 KB
  • 参考文献:Allievi L, Gigliotti C (2001) Response of the bacteria and fungi of two soils to the sulfonylurea herbicide cinosulfuron. J Environ Sci Heal B 36:161–175CrossRef
    Bauerle RH, Freundlich M, Umbarger HE, Stormer FC (1964) Control of isoleucine valine + leucine biosynthesis.II. endproduct inhibition by valine of acetohydroxy acid synthetase in salmonella typhimurium. Biochim Biophys Acta 92:142–149
    Bending GD, Rodriguez-Cruz MS, Lincoln SD (2007) Fungicide impacts on microbial communities in soils with contrasting management histories. Chemosphere 69:82–88CrossRef
    Blank H, Wängberg SA, Molander S (1988) Pollution-induced community tolerance-a new ecotoxicological tool. In: Cairns JJ, Pratt JR (eds) Functional testing of aquatic biota for estimating hazards of chemicals. American Society for Testing and Materials, Philadelphia, pp 219–230CrossRef
    Boldt TS, Jacobsen CS (1998) Different toxic effects of the sulfonylurea herbicides metsulfuron methyl, chlorsulfuron and thifensulfuron methyl on fluorescent pseudomonads isolated from an agricultural soil. FEMS Microbiol Lett 161:29–35CrossRef
    Burnet M, Hodgson B (1991) Differential-effects of the sulfonylurea herbicides chlorsulfuron and sulfometuron methyl on microorganisms. Arch Microbiol 155:521–525CrossRef
    Crouzet O, Batisson I, Besse-Hoggan P, Bonnemoy F, Bardot C, Poly F, Bohatier J, Mallet C (2010) Response of soil microbial communities to the herbicide mesotrione: a dose-effect microcosm approach. Soil Biol Biochem 42:193–202CrossRef
    De Felice M, Griffo G, Lago CT, Limauro D, Ricca E (1988) Detection of the acetolactate synthase isozyme-i and isozyme-iii of Escherichia-coli-k12. Method Enzymol 166:241–244CrossRef
    Duggleby RG, Pang SS (2000) Acetohydroxyacid synthase. J Biochem Mol Biol 33:1–36
    El Azhari N, Devers-Lamrani M, Chatagnier G, Rouard N, Martin-Laurent F (2010) Molecular analysis of the catechol-degrading bacterial community in a coal wasteland heavily contaminated with PAHs. J Hazard Mater 177:593–601CrossRef
    Elisakova V, Patek M, Holatko J, Nesvera JN, Leyval D, Goergen JL, Delaunay S (2005) Feedback-resistant acetohydroxy acid synthase increases valine production in Corynebacterium glutamicum. Appl Environ Microb 71:207–213CrossRef
    Forlani G, Mantelli M, Branzoni M, Nielsen E, Favilli F (1995) Differential sensitivity of plant-associated bacteria to sulfonylurea and imidazolinone herbicides. Plant Soil 176:243–253CrossRef
    Friedberg D, Seijffers J (1988) Sulfonylurea-resistant mutants and natural tolerance of cyanobacteria. Arch Microbiol 150:278–281CrossRef
    Gianfreda L, Rao MA (2011) The influence of pesticides on soil enzymes. Soil Enzymology, Soil Biology 22. Springer-Verlag, Berlin Heidelberg, pp 293–312
    Gurtler V, Stanisich VA (1996) New approaches to typing and identification of bacteria using the 16S-23S rDNA spacer region. Microbiol-Sgm 142:3–16CrossRef
    Huang X, He J, Sun XF, Sun JQ, Li YF, Shen JJ, Li SP (2010) Characterization and molecular mechanism of a naturally occurring metsulfuron-methyl resistant strain of Pseudomonas aeruginosa. World J Microb Biot 26:515–521CrossRef
    Ibdah M, BarIlan A, Livnah O, Schloss JV, Barak Z, Chipman DM (1996) Homology modeling of the structure of bacterial acetohydroxy acid synthase and examination of the active site by site-directed mutagenesis. Biochemistry 35:16282–16291CrossRef
    Jacobsen CS, Hjelmso MH (2014) Agricultural soils, pesticides and microbial diversity. Curr Opin Biotech 27:15–20CrossRef
    Janssen PH (2006) Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Appl Environ Microb 72:1719–1728CrossRef
    Karpouzas DG, Kandeler E, Bru D, Friedel I, Auer Y, Kramer S, Vasileiadis S, Petric I, Udikovic-Kolic N, Djuric S, Martin-Laurent F (2014a) A tiered assessment approach based on standardized methods to estimate the impact of nicosulfuron on the abundance and function of the soil microbial community. Soil Biol Biochem 75:282–291CrossRef
    Karpouzas DG, Papadopoulou E, Ipsilantis I, Friedel I, Petric I, Udikovic-Kolic N, Djuric S, Kandeler E, Menkissoglu-Spiroudi U, Martin-Laurent F (2014b) Effects of nicosulfuron on the abundance and diversity of arbuscular mycorrhizal fungi used as indicators of pesticide soil microbial toxicity. Ecol Indic 39:44–53CrossRef
    Kirk JL, Beaudette LA, Hart M, Moutoglis P, Khironomos JN, Lee H, Trevors JT (2004) Methods of studying soil microbial diversity. J Microbiol Methods 58:169–188CrossRef
    Lang ZF, Shen JJ, Cai S, Zhang J, He J, Li SP (2011) Expression, characterization, and site-directed mutation of a multiple herbicide-resistant acetohydroxyacid synthase (rAHAS) from Pseudomonas sp Lm10. Curr Microbiol 63:145–150CrossRef
    LaRossa RA, Schloss JV (1984) The sulfonylurea herbicide sulfometuron methyl is an extremely potent and selective inhibitor of acetolactate synthase in salmonella-typhimurium. J Biol Chem 259:8753–8757
    Lin X, Zhao Y, Fu Q, Umashankara ML, Feng Z (2008) Analysis of culturable and unculturable microbial community in bensulfuron-methyl contaminated paddy soils. J Environ Sci (China) 20(12):1494–500
    Martin-Laurent F, Kandeler E, Petric I, Djuric S, Karpouzas DG (2013) ECOFUN-MICROBIODIV: an FP7 European project for developing and evaluating innovative tools for assessing the impact of pesticides on soil functional microbial diversity-towards new pesticide registration regulation? Environ Sci Pollut R 20:1203–1205CrossRef
    Mukherjee AK, Bordoloi NK (2012) Biodegradation of benzene, toluene, and xylene (BTX) in liquid culture and in soil by Bacillus subtilis and Pseudomonas aeruginosa strains and a formulated bacterial consortium. Environ Sci and Pollut R 19:3380–3388CrossRef
    Nelson DR, Duxbury T (2008) The distribution of acetohydroxyacid synthase in soil bacteria. Anton Leeuw Int J G 93:123–132CrossRef
    Niemi RM, Heiskanen I, Ahtiainen JH, Rahkonen A, Mantykoski K, Welling L, Laitinen P, Ruuttunen P (2009) Microbial toxicity and impacts on soil enzyme activities of pesticides used in potato cultivation. Appl Soil Ecol 41:293–304CrossRef
    Nye TMW, Lio P, Gilks WR (2006) A novel algorithm and web-based tool for comparing two alternative phylogenetic trees. Bioinformatics 22:117–119CrossRef
    Perriere G, Gouy M (1996) WWW-Query: an on-line retrieval system for biological sequence banks. Biochimie 78:364–369CrossRef
    Saeki M, Toyota K (2004) Effect of bensulfuron-methyl (a sulfonylurea herbicide) on the soil bacterial community of a paddy soil microcosm. Biol Fert Soils 40:110–118CrossRef
    Seghers D, Siciliano SD, Top EM, Verstraete W (2005) Combined effect of fertilizer and herbicide applications on the abundance, community structure and performance of the soil methanotrophic community. Soil Biol Biochem 37:187–193CrossRef
    Tapia LS, Bauman TT, Harvey RG, Kells JJ, Kapusta G, Loux MM, Lueschen WE, Owen MDK, Hageman LH, Strachan SD (1997) Postemergence herbicide application timing effects on annual grass control and corn (Zea mays) grain yield. Weed Sci 45:138–143
    Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882CrossRef
    Topp E, Chapman R, Devers-Lamrani M, Hartmann A, Marti R, Martin-Laurent F, Sabourin L, Scott A, Sumarah M (2013) Accelerated biodegradation of veterinary antibiotics in agricultural soil following long-term exposure, and isolation of a sulfamethazine-degrading Microbacterium sp. J Environ Qual 42:173–178CrossRef
    Udikovic-Kolic N, Scott C, Martin-Laurent F (2012) Evolution of atrazine-degrading capabilities in the environment. Appl Microbiol Biotechnol 96:1175–1189CrossRef
    Xie XM, Liao M, Huang CY, Liu WP (2004) Effects of bensulfuron-methyl on soil microbial activity and biochemical characteristics in paddy. Chinese J Rice Sci 18:67–72
    Zhang H, Mu WH, Hou ZG, Wu X, Zhao WW, Zhang XH, Pan HY, Zhang SH (2012) Biodegradation of nicosulfuron by the bacterium Serratia marcescens N80. J Environ Sci Heal B 47:153–160CrossRef
    Zhou Q, Liu W, Zhang Y, Liu KK (2007) Action mechanisms of acetolactate synthase-inhibiting herbicides. Pestic Biochem Phys 89:89–96CrossRef
    Zohar Y, Einav M, Chipman DM, Barak Z (2003) Acetohydroxyacid synthase from Mycobacterium avium and its inhibition by sulfonylureas and imidazolinones. BBA-Proteins Proteom 1649:97–105CrossRef
  • 作者单位:Ines Petric (1)
    Dimitrios G Karpouzas (2)
    David Bru (3)
    Nikolina Udikovic-Kolic (1)
    Ellen Kandeler (4)
    Simonida Djuric (5)
    Fabrice Martin-Laurent (3)

    1. Rudjer Boskovic Institute, Division for Marine and Environmental Research, HR-10002, Zagreb, Croatia
    2. University of Thessaly, Department of Biochemistry and Biotechnology, Ploutonos 26 and Aeolou Str, 412 21, Larisa, Greece
    3. INRA, UMR 1347 Agroécologie, BP 86510, 21065, Dijon CEDEX, France
    4. Institute of Soil Science and Land Evaluation, Soil Biology Section, University of Hohenheim, Emil-Wolff-Str. 27, 70593, Stuttgart, Germany
    5. University of Novi Sad, Faculty of Agriculture, Novi Sad, Serbia
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Environment
    Environment
    Atmospheric Protection, Air Quality Control and Air Pollution
    Waste Water Technology, Water Pollution Control, Water Management and Aquatic Pollution
    Industrial Pollution Prevention
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1614-7499
文摘
The action mode of sulfonylurea herbicides is the inhibition of the acetohydroxyacid synthase (AHAS) required for the biosynthesis of amino acids valine and isoleucine in plants. However, this enzyme is also present in a range of non-targeted organisms, among which soil microorganisms are known for their pivotal role in ecosystem functioning. In order to assess microbial toxicity of sulfonylurea herbicide nicosulfuron (NS), a tiered microcosm (Tier I) to field (Tier II) experiment was designed. Soil bacteria harboring AHAS enzyme tolerant to the herbicide nicosulfuron were enumerated, isolated, taxonomically identified, and physiologically characterized. Results suggested that application of nicosulfuron drives the selection towards NS-tolerant bacteria, with increasing levels of exposure inducing an increase in their abundance and diversity in soil. Tolerance to nicosulfuron was shown to be widespread among the microbial community with various bacteria belonging to Firmicutes (Bacillus) and Actinobacteria (Arthrobacter) phyla representing most abundant and diverse clusters. While Arthrobacter bacterial population dominated community evolved under lower (Tier II) nicosulfuron selection pressure, it turns out that Bacillus dominated community evolved under higher (Tier I) nicosulfuron selection pressure. Different NS-tolerant bacteria likewise showed different levels of sensitivity to the nicosulfuron estimated by growth kinetics on nicosulfuron. As evident, Tier I exposure allowed selection of populations able to better cope with nicosulfuron. One could propose that sulfonylureas-tolerant bacterial community could constitute a useful bioindicator of exposure to these herbicides for assessing their ecotoxicity towards soil microorganisms.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700