Heat and hypoxia stresses enhance the accumulation of aliphatic glucosinolates and sulforaphane in broccoli sprouts
详细信息    查看全文
  • 作者:Liping Guo ; Runqiang Yang ; Yulin Zhou ; Zhenxin Gu
  • 关键词:Glucosinolate ; Sulforaphane ; Myrosinase activity ; Epithiospecifier protein (ESP) activity ; Gene expression ; Broccoli sprouts
  • 刊名:European Food Research and Technology
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:242
  • 期:1
  • 页码:107-116
  • 全文大小:709 KB
  • 参考文献:1.Fahey JW, Zhang Y, Talalay P (1997) Broccoli sprouts: an exceptionally rich source of inducers of enzymes that protect against chemical carcinogens. Proc Natl Acad Sci 94(19):10367–10372CrossRef
    2.Martínez-Villaluenga C, Frías J, Gulewicz P, Gulewicz K, Vidal-Valverde C (2008) Food safety evaluation of broccoli and radish sprouts. Food Chem Toxicol 46(5):1635–1644CrossRef
    3.Pérez-Balibrea S, Moreno DA, García-Viguera C (2011) Genotypic effects on the phytochemical quality of seeds and sprouts from commercial broccoli cultivars. Food Chem 125(2):348–354CrossRef
    4.Traka M, Mithen R (2009) Glucosinolates, isothiocyanates and human health. Phytochem Rev 8(1):269–282CrossRef
    5.Zhang C, Su Z-Y, Khor TO, Shu L, Kong A-NT (2013) Sulforaphane enhances Nrf2 expression in prostate cancer TRAMP C1 cells through epigenetic regulation. Biochem Pharmacol 85(9):1398–1404CrossRef
    6.Juge N, Mithen R, Traka M (2007) Molecular basis for chemoprevention by sulforaphane: a comprehensive review. Cell Mol Life Sci 64(9):1105–1127CrossRef
    7.Wu L, Ashraf MHN, Facci M, Wang R, Paterson PG, Ferrie A, Juurlink BH (2004) Dietary approach to attenuate oxidative stress, hypertension, and inflammation in the cardiovascular system. Proc Natl Acad Sci USA 101(18):7094–7099CrossRef
    8.Bahadoran Z, Mirmiran P, Hosseinpanah F, Rajab A, Asghari G, Azizi F (2012) Broccoli sprouts powder could improve serum triglyceride and oxidized LDL/LDL-cholesterol ratio in type 2 diabetic patients: a randomized double-blind placebo-controlled clinical trial. Diabetes Res Clin Pract 96(3):348–354CrossRef
    9.Matusheski NV, Swarup R, Juvik JA, Mithen R, Bennett M, Jeffery EH (2006) Epithiospecifier protein from broccoli (Brassica oleracea L. ssp. italica) inhibits formation of the anticancer agent sulforaphane. J Agric Food Chem 54(6):2069–2076CrossRef
    10.Matusheski NV, Jeffery EH (2001) Comparison of the bioactivity of two glucoraphanin hydrolysis products found in broccoli, sulforaphane and sulforaphane nitrile. J Agric Food Chem 49(12):5743–5749CrossRef
    11.Matusheski NV, Juvik JA, Jeffery EH (2004) Heating decreases epithiospecifier protein activity and increases sulforaphane formation in broccoli. Phytochem 65(9):1273–1281CrossRef
    12.Guo L, Yang R, Wang Z, Guo Q, Gu Z (2014) Glucoraphanin, sulforaphane and myrosinase activity in germinating broccoli sprouts as affected by growth temperature and plant organs. J Funct Foods 9:70–77CrossRef
    13.Pérez-Balibrea S, Moreno DA, García-Viguera C (2008) Influence of light on health-promoting phytochemicals of broccoli sprouts. J Sci Food Agric 88(5):904–910CrossRef
    14.Schonhof I, Kläring HP, Krumbein A, Claußen W, Schreiner M (2007) Effect of temperature increase under low radiation conditions on phytochemicals and ascorbic acid in greenhouse grown broccoli. Agric Ecosyst Environ 119(1–2):103–111CrossRef
    15.Schonhof I, Kläring HP, Krumbein A, Schreiner M (2007) Interaction between atmospheric CO2 and glucosinolates in broccoli. J Chem Ecol 33(1):105–114CrossRef
    16.Guo R, Yuan G, Wang Q (2013) Effect of NaCl treatments on glucosinolate metabolism in broccoli sprouts. J Zhejiang Univ Sci B 14(2):124–131CrossRef
    17.Schreiner MC, Peters PJ, Krumbein AB (2006) Glucosinolates in mixed-packaged mini broccoli and mini cauliflower under modified atmosphere. J Agric Food Chem 54(6):2218–2222CrossRef
    18.Christou A, Manganaris GA, Fotopoulos V (2014) Systemic mitigation of salt stress by hydrogen peroxide and sodium nitroprusside in strawberry plants via transcriptional regulation of enzymatic and non-enzymatic antioxidants. Environ Exp Bot 107:46–54CrossRef
    19.Li G, Quiros CF (2002) Genetic analysis, expression and molecular characterization of BoGSL-ELONG, a major gene involved in the aliphatic glucosinolate pathway of Brassica species. Genetics 162(4):1937–1943
    20.Zang YX, Kim HU, Kim JA, Lim MH, Jin M, Lee SC, Kwon SJ, Lee SI, Hong JK, Park TH, Mun JH, Seol YJ, Hong SB, Park BS (2009) Genome-wide identification of glucosinolate synthesis genes in Brassica rapa. FEBS J 276(13):3559–3574CrossRef
    21.Miao H, Wei J, Zhao Y, Yan H, Sun B, Huang J, Wang Q (2013) Glucose signalling positively regulates aliphatic glucosinolate biosynthesis. J Exp Bot 64(4):1097–1109CrossRef
    22.Hirai MY, Sugiyama K, Sawada Y, Tohge T, Obayashi T, Suzuki A, Araki R, Sakurai N, Suzuki H, Aoki K (2007) Omics-based identification of Arabidopsis Myb transcription factors regulating aliphatic glucosinolate biosynthesis. Proc Natl Acad Sci 104(15):6478–6483CrossRef
    23.Gigolashvili T, Yatusevich R, Berger B, Müller C, Flügge UI (2007) The R2R3-MYB transcription factor HAG1/MYB28 is a regulator of methionine-derived glucosinolate biosynthesis in Arabidopsis thaliana. Plant J 51(2):247–261CrossRef
    24.Hansen BG, Kliebenstein DJ, Halkier BA (2007) Identification of a flavin-monooxygenase as the S-oxygenating enzyme in aliphatic glucosinolate biosynthesis in Arabidopsis. Plant J 50(5):902–910CrossRef
    25.Dionisio-Sese ML, Tobita S (1998) Antioxidant responses of rice seedlings to salinity stress. Plant Sci 135(1):1–9CrossRef
    26.Hodges DM, DeLong JM, Forney CF, Prange RK (1999) Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 207(4):604–611CrossRef
    27.Madhava Rao K, Sresty T (2000) Antioxidative parameters in the seedlings of pigeonpea (Cajanus cajan (L.) Millspaugh) in response to Zn and Ni stresses. Plant Sci 157(1):113–128CrossRef
    28.Font R, Río-Celestino MD, Cartea E, de Haro-Bailón A (2005) Quantification of glucosinolates in leaves of leaf rape (Brassica napus ssp. pabularia) by near-infrared spectroscopy. Phytochemistry 66(2):175–185CrossRef
    29.Guo L, Yang R, Wang Z, Guo Q, Gu Z (2014) Effect of NaCl stress on health-promoting compounds and antioxidant activity in the sprouts of three broccoli cultivars. Int J Food Sci Nutr 65(4):476–481CrossRef
    30.Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1):248–254CrossRef
    31.Burow M, Müller R, Gershenzon J, Wittstock U (2006) Altered glucosinolate hydrolysis in genetically engineered Arabidopsis thaliana and its influence on the larval development of Spodoptera littoralis. J Chem Ecol 32(11):2333–2349CrossRef
    32.Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25(4):402–408CrossRef
    33.Ramakrishna A, Ravishankar GA (2011) Influence of abiotic stress signals on secondary metabolites in plants. Plant Signal Behav 6(11):1720–1731CrossRef
    34.Guo R, Yuan G, Wang Q (2011) Effect of sucrose and mannitol on the accumulation of heat-promoting compounds and the activity of metabolic enzymes in broccoli sprouts. Sci Hortic 128(3):159–165CrossRef
    35.Pérez-Balibrea S, Moreno DA, García-Viguera C (2011) Improving the phytochemical composition of broccoli sprouts by elicitation. Food Chem 129(1):35–44CrossRef
    36.Khan M, Ulrichs C, Mewis I (2010) Influence of water stress on the glucosinolate profile of Brassica oleracea var. italica and the performance of Brevicoryne brassicae and Myzus. Entomol Exp Appl 137(3):229–236CrossRef
    37.Knight H, Knight MR (2001) Abiotic stress signalling pathways: specificity and cross-talk. Trends Plant Sci 6(6):262–267CrossRef
    38.Guo R, Yuan G, Wang Q (2011) Sucrose enhances the accumulation of anthocyanins and glucosinolates in broccoli sprouts. Food Chem 129(3):1080–1087CrossRef
    39.Li X, Uddin MR, Park WT, Kim YB, Seo JM, Kim S-J, Nou I-S, Lee J, Kim H, Park SU (2014) Accumulation of anthocyanin and related genes expression during the development of cabbage seedlings. Process Biochem 49(7):1084–1091CrossRef
    40.Gu Z, Guo Q, Gu Y (2012) Factors influencing glucoraphanin and sulforaphane formation in Brassica plants: a review. J Integr Agric 11(11):1804–1816CrossRef
    41.Wang GC, Farnham M, Jeffery EH (2012) Impact of thermal processing on sulforaphane yield from broccoli (Brassica oleracea L. ssp.italica). J Agric Food Chem 60(27):6743–6748CrossRef
  • 作者单位:Liping Guo (1) (2)
    Runqiang Yang (1)
    Yulin Zhou (1)
    Zhenxin Gu (1)

    1. College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People’s Republic of China
    2. College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, People’s Republic of China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Food Science
    Analytical Chemistry
    Biotechnology
    Agriculture
    Forestry
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1438-2385
文摘
In this study, aliphatic glucosinolates and sulforaphane were accumulated in broccoli sprouts under the stresses of heat, hypoxia and heat plus hypoxia. Glucoraphanin content in 7-day-old broccoli sprouts under heat, hypoxia and heat plus hypoxia stresses enhanced by 1.39-, 1.10- and 1.16-fold compared with the control, respectively; meanwhile, glucoerucin content increased by 1.87-, 4.17- and 3.24-fold, respectively. Aliphatic glucosinolate content was enhanced by heat stress due to the increasing expression of Elong, CYP83A1 and FMO GS-OX1 . However, under hypoxia and heat plus hypoxia stresses, the expression levels of Elong, CYP83A1, UGT74B1, ST5b and AOP2 related to aliphatic glucosinolates biosynthesis were dramatically up-regulated. Heat, hypoxia and heat plus hypoxia stresses enhanced sulforaphane formation in 7-day-old sprouts by 153.73, 95.15 and 86.95 % compared with the control, respectively. However, heat plus hypoxia stress did not exhibit the synergistic effect of heat and hypoxia stresses. These results indicated that heat and hypoxia stresses were feasible strategies to enhance the accumulation of aliphatic glucosinolates and sulforaphane in broccoli sprouts. Keywords Glucosinolate Sulforaphane Myrosinase activity Epithiospecifier protein (ESP) activity Gene expression Broccoli sprouts

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700