Bäcklund transformation and N-shock-wave solutions for a (3+1)-dimensional nonlinear evolution equation
详细信息    查看全文
  • 作者:Ya Sun ; Bo Tian ; Yu-Feng Wang ; Hui-Ling Zhen
  • 关键词:(3+1) ; Dimensional nonlinear evolution equation ; Hirota method ; Shock ; wave solutions ; Bäcklund transformation
  • 刊名:Nonlinear Dynamics
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:84
  • 期:2
  • 页码:851-861
  • 全文大小:9,108 KB
  • 参考文献:1.Agrawal, G.P.: Nonlinear Fiber Optics. Academic Press, San Diego (2012)MATH
    2.Tian, B., Gao, Y.T.: Spherical Kadomtsev–Petviashvili equation and nebulons for dust ion-acoustic waves with symbolic computation. Phys. Lett. A 340, 243–250 (2005)CrossRef MATH
    3.Tian, B., Gao, Y.T., Zhu, H.W.: Variable-coefficient higher-order nonlinear Schrödinger model in optical fibers: Variable-coefficient bilinear form, Bäcklund transformation, brightons and symbolic computation. Phys. Lett. A 366, 223–229 (2007)CrossRef MATH
    4.Gao, Y.T., Tian, B.: Cosmic dust-ion-acoustic waves, spherical modified Kadomtsev–Petviashvili model, and symbolic computation. Phys. Plasmas 13, 112901–112906 (2006)CrossRef
    5.Gao, Y.T., Tian, B.: Cylindrical Kadomtsev–Petviashvili model, nebulons and symbolic computation for cosmic dust ion-acoustic waves. Phys. Lett. A 349, 314–319 (2006)CrossRef
    6.Gao, Y.T., Tian, B.: Reply to: Comment on: ‘Spherical Kadomtsev–Petviashvili equation and nebulons for dust ion-acoustic waves with symbolic computation’. Phys. Lett. A 361, 523–528 (2007)CrossRef MATH
    7.Whitham, G.B.: Linear and Nonlinear Waves. Wiley, New York (1974)MATH
    8.Wang, Y.F., Tian, B., Wang, P., Li, M., Jiang, Y.: Bell-polynomial approach and soliton solutions for the Zhiber–Shabat equation and (2+1)-dimensional Gardner equation with symbolic computation. Nonlinear Dyn. 69, 2031–2040 (2012)MathSciNet CrossRef MATH
    9.Zuo, D.W., Gao, Y.T., Meng, G.Q., Shen, Y.J., Yu, X.: Multi-soliton solutions for the three-coupled KdV equations engendered by the Neumann system. Nonlinear Dyn. 75, 701–708 (2014)MathSciNet CrossRef MATH
    10.Calogero, F.: A method to generate solvable nonlinear evolution equations. Lettere Al Nuovo Cimento 14, 443–448 (1975)MathSciNet CrossRef
    11.Radhakrishnan, R., Lakshmanan, M.: Dromion like structures in the (2+1)-dimensional breaking soliton equation. Phys. Lett. A 197, 7–12 (1995)MathSciNet CrossRef MATH
    12.Calogero, F., Degasperis, A.: Nonlinear evolution equations solvable by the inverse spectral transform. I. Nuovo Cimento B 31, 201–242 (1976)MathSciNet CrossRef
    13.Calogero, F., Degasperis, A.: Nonlinear evolution equations solvable by the inverse spectral transform. II. Nuovo Cimento B 39, 1–54 (1977)MathSciNet CrossRef
    14.Bogoyavlenskii, O.I.: Breaking solitons in (2+1)-dimensional integrable equations. Russ. Math. Surv. 45, 1–86 (1990)MathSciNet CrossRef
    15.Li, Y.S., Zhang, Y.J.: Symmetries of a (2+1)-dimensional breaking soliton equation. J. Phys. A 26, 7487–7494 (1993)MathSciNet CrossRef MATH
    16.Lou, S.Y.: A (2+1)-dimensional extension for the sine-Gordon equation. J. Phys. A 26, L789–L791 (1993)MathSciNet CrossRef
    17.Qin, Y., Gao, Y.T., Shen, Y.J., Sun, Y.H., Meng, G.Q., Yu, X.: Solitonic interaction of a variable-coefficient (2+1)-dimensional generalized breaking soliton equation. Phys. Scr. 88(045004), 1–7 (2013)
    18.Geng, X.G., Cao, C.W.: Explicit solutions of the (2+1)-dimensional breaking soliton equation. Chaos Solitons Fract. 22, 683–691 (2004)MathSciNet CrossRef MATH
    19.Schiff, J.: Painlevé Transendent, Their Asymptotics and Physical Applications. Plenum, New York (1992)
    20.Yan, Z.Y., Zhang, H.Q.: Constructing families of soliton-like solutions to a (2+1)-dimensional breaking soliton equation using symbolic computation. Comput. Math. Appl. 44, 1439–1444 (2002)MathSciNet CrossRef MATH
    21.Yu, S.J., Toda, K., Sasa, N., Fukuyama, T.: N soliton solutions to the Bogoyavlenskii–Schiff equation and a quest for the soliton solution in (3+1) dimensions. J. Phys. A 31, 3337–3347 (1998)MathSciNet CrossRef MATH
    22.Hamed, Y.S., Sayed, M., Elagan, S.K., El-Zahar, E.R.: The improved \((\frac{G^{\prime }}{G})\) -expansion method for solving (3+1)-dimensional potential-YTSF equation. J. Mod. Methods Numer. Math. 2, 32–38 (2011)CrossRef MATH
    23.Yan, Z.Y.: New families of nontravelling wave solutions to a new (3+1)-dimensional potential-YTSF equation. Phys. Lett. A 318, 78–83 (2003)MathSciNet CrossRef MATH
    24.Wang, Y.P.: Solving the (3+1)-dimensional potential-YTSF equation with Exp-function method. J. Phys.: Conf. Ser. 96(012186), 1–7 (2008)
    25.Li, Z.T., Dai, Z.D.: Exact periodic cross-kink wave solutions and breather type of two-solitary wave solutions for the (3+1)-dimensional potential-YTSF equation. Comput. Math. Appl. 61, 1939–1945 (2011)MathSciNet CrossRef MATH
    26.Bai, C.L., Liu, X.Q., Zhao, H.: Bäcklund transformation and multiple soliton solutions for (3+1)-dimensional potential-YTSF equation. Commun. Theor. Phys. 42, 827–830 (2004)MathSciNet CrossRef MATH
    27.Ma, W.X., Huang, T.W., Zhang, Y.: A multiple exp-function method for nonlinear differential equations and its application. Phys. Scr. 82(065003), 1–8 (2010)
    28.Hirota, R.: The Direct Method in Soliton Theory. Cambridge University Press, Cambridge (2004)CrossRef MATH
    29.Tian, B., Gao, Y.T.: Variable-coefficient higher-order nonlinear Schrödinger model in optical fibers: new transformation with burstons, brightons and symbolic computation. Phys. Lett. A 359, 241–248 (2006)CrossRef
    30.Tian, B., Gao, Y.T.: Cylindrical nebulons, symbolic computation and Bäcklund transformation for the cosmic dust acoustic waves. Phys. Plasmas 12(70703), 1–4 (2005)MathSciNet
    31.Gao, Y.T., Tian, B.: (3+1)-Dimensional generalized Johnson model for cosmic dust-ion-acoustic nebulons with symbolic computation. Phys. Plasmas (Lett.) 13, 120703–120706 (2006)CrossRef
    32.Gao, Y.T., Tian, B.: Reply to: Comment on: ‘Spherical Kadomtsev–Petviashvili equation and nebulons for dust ion-acoustic waves with symbolic computation’. Phys. Lett. A 361, 523–528 (2007)CrossRef MATH
    33.Barnett, M.P., Capitani, J.F., Gathen, Von Zur, Gerhard, J.: Symbolic calculation in chemistry: selected examples. Int. J. Quant. Chem 100, 80–104 (2004)CrossRef
    34.Wadati, M., Sanuki, H., Konno, K.: Relationships among inverse method, Bäcklund transformation and an infinite number of conservation laws. Prog. Theor. Phys. 53, 419–436 (1975)MathSciNet CrossRef MATH
    35.Rogers, C., Shadwick, W.F.: Bäcklund Transformations and Their Applications. Academic Press, New York (1982)MATH
    36.Zhang, H.Q., Meng, X.H., Li, J., Tian, B.: Soliton resonance of the (2+1)-dimensional Boussinesq equation for gravity water waves. Nonlinear Anal. Real World Appl. 9, 920–926 (2008)MathSciNet CrossRef MATH
  • 作者单位:Ya Sun (1)
    Bo Tian (1) (2)
    Yu-Feng Wang (1)
    Hui-Ling Zhen (1)

    1. School of Science, Beijing University of Posts and Telecommunications, Beijing, 100876, China
    2. State Key Laboratory of Information Photonics and Optical Communications, School of Science, Beijing University of Posts and Telecommunications, Beijing, 100876, China
  • 刊物类别:Engineering
  • 刊物主题:Vibration, Dynamical Systems and Control
    Mechanics
    Mechanical Engineering
    Automotive and Aerospace Engineering and Traffic
  • 出版者:Springer Netherlands
  • ISSN:1573-269X
文摘
In this paper, a (3+1)-dimensional nonlinear evolution equation is investigated, which can be used to describe reacting mixtures and shallow water waves. Through the Hirota method and symbolic computation, bilinear forms and Bäcklund transformation are derived, which are different from those in the existing literature. Moreover, N-shock-wave solutions are obtained. Based on those shock-wave solutions, propagation and collision of the shock waves are discussed via the asymptotic and graphic analysis on different planes: (1) oblique elastic collisions between/among the two/three shock waves will arise on the x–y and y–z planes, while parallel elastic collisions exist on the x–z plane; (2) shock waves maintain their original directions, amplitudes and velocities except for some small phase shifts after each collision; (3) the shock wave with higher amplitude travels faster and moves across the slower.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700