Non-enzymatic isolation followed by supplementation of basic fibroblast growth factor improves proliferation, clonogenic capacity and SSEA-4 expression of perivascular cells from human umbilical cord
详细信息    查看全文
  • 作者:Borim An (1)
    Sunghun Na (2)
    Sungeun Lee (3)
    Woo Jin Kim (1)
    Se-Ran Yang (4) (6)
    Heung-Myong Woo (5) (6)
    Songyi Kook (2)
    Yoonki Hong (1)
    Haengseok Song (3)
    Seok-Ho Hong (1) (6)

    1. Department of Internal Medicine
    ; School of Medicine ; Kangwon National University ; 1 Kangwondaehak-gil ; Chuncheon-si ; Gangwon-do ; 200-701 ; Republic of Korea
    2. Department of Obstetrics and Gynecology
    ; School of Medicine ; Kangwon National University ; Chuncheon ; Republic of Korea
    3. Department of Biomedical Science
    ; CHA University ; Seoul ; Republic of Korea
    4. Department of Thoracic and Cardiovascular Surgery
    ; School of Medicine ; Kangwon National University ; Chuncheon ; Republic of Korea
    6. Stem Cell Institute
    ; Kangwon National University ; Chuncheon ; Republic of Korea
    5. College of Veterinary Medicine
    ; Kangwon National University ; Chuncheon ; Republic of Korea
  • 关键词:Perivascular cells ; bFGF ; Non ; enzymatic isolation ; Umbilical cord ; SSEA ; 4
  • 刊名:Cell and Tissue Research
  • 出版年:2015
  • 出版时间:March 2015
  • 年:2015
  • 卷:359
  • 期:3
  • 页码:767-777
  • 全文大小:2,944 KB
  • 参考文献:1. Ahn, HJ, Lee, WJ, Kwack, K, Kwon, YD (2009) FGF2 stimulates the proliferation of human mesenchymal stem cells through the transient activation of JNK signaling. FEBS Lett 583: pp. 2922-2926 CrossRef
    2. Baksh, D, Yao, R, Tuan, RS (2007) Comparison of proliferative and multilineage differentiation potential of human mesenchymal stem cells derived from umbilical cord and bone marrow. Stem Cells 25: pp. 1384-1392 CrossRef
    3. Bouacida, A, Rosset, P, Trichet, V, Guilloton, F, Espagnolle, N, Cordonier, T, Heymann, D, Layrolle, P, Sens茅b茅, L, Deschaseaux, F (2012) Pericyte-like progenitors show high immaturity and engraftment potential as compared with mesenchymal stem cells. PLoS One 7: pp. e48648 CrossRef
    4. Carvalho, PP, Gimble, JM, Dias, IR, Gomes, ME, Reis, RL (2013) Xenofree enzymatic products for the isolation of human adipose-derived stromal/stem cells. Tissue Eng C Methods 19: pp. 473-478 CrossRef
    5. Chen, CW, Corselli, M, P茅ault, B, Huard, J (2012) Human blood-vessel-derived stem cells for tissue repair and regeneration. J Biomed Biotechnol 2012: pp. 597439
    6. Chen, E, Tang, MK, Yao, Y, Yau, WW, Lo, LM, Yang, X, Chui, YL, Chan, J, Lee, KK (2013) Silencing BRE expression in human umbilical cord perivascular (HUCPV) progenitor cells accelerates osteogenic and chondrogenic differentiation. PLoS One 8: pp. e67896 CrossRef
    7. Corselli, M, Chen, CW, Crisan, M, Lazzari, L, P茅ault, B (2010) Perivascular ancestors of adult multipotent stem cells. Arterioscler Thromb Vasc Biol 30: pp. 1104-1109 CrossRef
    8. Crisan, M, Yap, S, Casteilla, L, Chen, CW, Corselli, M, Park, TS, Andriolo, G, Sun, B, Zheng, B, Zhang, L, Norotte, C, Teng, PN, Traas, J, Schugar, R, Deasy, BM, Badylak, S, Buhring, HJ, Giacobino, JP, Lazzari, L, Huard, J, P茅ault, B (2008) A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 3: pp. 301-313 CrossRef
    9. Crisan, M, Corselli, M, Chen, WC, P茅ault, B (2012) Perivascular cells for regenerative medicine. J Cell Mol Med 16: pp. 2851-2860 CrossRef
    10. Eom, YW, Oh, JE, Lee, JI, Baik, SK, Rhee, KJ, Shin, HC, Kim, YM, Ahn, CM, Kong, JH, Kim, HS, Shim, KY (2014) The role of growth factors in maintenance of stemness in bone marrow-derived mesenchymal stem cells. Biochem Biophys Res Commun 445: pp. 16-22 CrossRef
    11. Fekete, N, Rojewski, MT, Lotfi, R, Schrezenmeier, H (2014) Essential components for ex vivo proliferation of mesenchymal stromal cells. Tissue Eng C Methods 20: pp. 129-139 CrossRef
    12. Francis, MP, Sachs, PC, Elmore, LW, Holt, SE (2010) Isolating adipose-derived mesenchymal stem cells from lipoaspirate blood and saline fraction. Organogenesis 6: pp. 11-14 CrossRef
    13. Fukushima, H, Kawanabe, N, Murata, S, Ishihara, Y, Yanagita, T, Balam, TA, Yamashiro, T (2012) SSEA-4 is a marker of human deciduous periodontal ligament stem cells. J Dent Res 91: pp. 955-960 CrossRef
    14. Gang, EJ, Bosnakovski, D, Figueiredo, CA, Visser, JW, Perlingeiro, RC (2007) SSEA-4 identifies mesenchymal stem cells from bone marrow. Blood 109: pp. 1743-1751 CrossRef
    15. Ghorbani, A, Jalali, SA, Varedi, M (2014) Isolation of adipose tissue mesenchymal stem cells without tissue destruction: a non-enzymatic method. Tissue Cell 46: pp. 54-58 CrossRef
    16. Hong, SH, Maghen, L, Kenigsbcerg, S, Teichert, AM, Rammeloo, AW, Shlush, E, Szaraz, P, Pereira, S, Lulat, A, Xiao, R, Yie, SM, Gauthier-Fisher, A, Librach, CL (2013) Ontogeny of human umbilical cord perivascular cells: molecular and fate potential changes during gestation. Stem Cells Dev 22: pp. 2425-2439 CrossRef
    17. Hu, F, Wang, X, Liang, G, Lv, L, Zhu, Y, Sun, B, Xiao, Z (2013) Effects of epidermal growth factor and basic fibroblast growth factor on the proliferation and osteogenic and neural differentiation of adipose-derived stem cells. Cell Reprogramming 15: pp. 224-232
    18. Jung, S, Sen, A, Rosenberg, L, Behie, LA (2010) Identification of growth and attachment factors for the serum-free isolation and expansion of human mesenchymal stromal cells. Cytotherapy 12: pp. 637-657 CrossRef
    19. Kawanabe, N, Murata, S, Fukushima, H, Ishihara, Y, Yanagita, T, Yanagita, E, Ono, M, Kurosaka, H, Kamioka, H, Itoh, T, Kuboki, T, Yamashiro, T (2012) Stage-specific embryonic antigen-4 identifies human dental pulp stem cells. Exp Cell Res 318: pp. 453-463 CrossRef
    20. Kim, JH, Lee, MC, Seong, SC, Park, KH, Lee, S (2011) Enhanced proliferation and chondrogenic differentiation of human synovium-derived stem cells expanded with basic fibroblast growth factor. Tissue Eng A 17: pp. 991-1002 CrossRef
    21. Lee, JH, Um, S, Jang, JH, Seo, BM (2012) Effects of VEGF and FGF-2 on proliferation and differentiation of human periodontal ligament stem cells. Cell Tissue Res 348: pp. 475-484 CrossRef
    22. Maddox, JR, Ludlow, KD, Li, F, Niyibizi, C (2012) Breast and abdominal adipose multipotent mesenchymal stromal cells and stage-specific embryonic antigen 4 expression. Cells Tissues Organs 196: pp. 107-116 CrossRef
    23. Mojsilovi膰, S, Krsti膰, A, Ili膰, V, Oki膰-膼or膽evi膰, I, Koci膰, J, Trivanovi膰, D, Santiba帽ez, JF, Jov膷i膰, G, Bugarski, D (2010) IL-17 and FGF signaling involved in mouse mesenchymal stem cell proliferation. Cell Tissue Res 346: pp. 305-316 CrossRef
    24. Nekanti, U, Mohanty, L, Venugopal, P, Balasubramanian, S, Totey, S, Ta, M (2010) Optimization and scale-up of Wharton鈥檚 jelly-derived mesenchymal stem cells for clinical applications. Stem Cell Res 5: pp. 244-254 CrossRef
    25. Ramasamy, R, Tong, CK, Yip, WK, Vellasamy, S, Tan, BC, Seow, HF (2012) Basic fibroblast growth factor modulates cell cycle of human umbilical cord-derived mesenchymal stem cells. Cell Prolif 45: pp. 132-139 CrossRef
    26. Rosu-Myles, M, McCully, J, Fair, J, Mehic, J, Menendez, P, Rodriguez, R, Westwood, C (2013) The globoseries glycosphingolipid SSEA-4 is a marker of bone marrow-derived clonal multipotent stromal cells in vitro and in vivo. Stem Cells Dev 22: pp. 1387-1397 CrossRef
    27. Salehinejad, P, Alitheen, NB, Ali, AM, Omar, AR, Mohit, M, Janzamin, E, Samani, FS, Torshizi, Z, Nematollahi-Mahani, SN (2012) Comparison of different methods for the isolation of mesenchymal stem cells from human umbilical cord Wharton鈥檚 jelly. In Vitro Cell Dev Biol Anim 48: pp. 75-83 CrossRef
    28. Shah, FS, Wu, X, Dietrich, M, Rood, J, Gimble, JM (2013) A non-enzymatic method for isolating human adipose tissue-derived stromal stem cells. Cytotherapy 15: pp. 979-985 CrossRef
    29. Tran, HL, Doan, VN, Le, HT, Ngo, LT (2014) Various methods for isolation of multipotent human periodontal ligament cells for regenerative medicine. In Vitro Cell Dev Biol Anim 50: pp. 597-602 CrossRef
    30. Tsang, WP, Shu, Y, Kwok, PL, Zhang, F, Lee, KK, Tang, MK, Li, G, Chan, KM, Chan, WY, Wan, C (2013) CD146+ human umbilical cord perivascular cells maintain stemness under hypoxia and as a cell source for skeletal regeneration. PLoS One 8: pp. e76153 CrossRef
    31. Vaculik, C, Schuster, C, Bauer, W, Iram, N, Pfisterer, K, Kramer, G, Reinisch, A, Strunk, D, Elbe-B眉rger, A (2012) Human dermis harbors distinct mesenchymal stromal cell subsets. J Invest Dermatol 132: pp. 563-574 CrossRef
    32. Zhang, X, Wang, Y, Gao, Y, Liu, X, Bai, T, Li, M, Li, L, Chi, G, Xu, H, Liu, F, Liu, JY, Li, Y (2013) Maintenance of high proliferation and multipotent potential of human hair follicle-derived mesenchymal stem cells by growth factors. Int J Mol Med 31: pp. 913-921
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Biomedicine
    Human Genetics
    Proteomics
    Molecular Medicine
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-0878
文摘
Multipotent perivascular cells (PVCs) have recently gained attention as an alternative source for cell-based regenerative medicine. Because of their rarity in human tissues, the development of efficient methods to isolate and expand PVCs from various fetal and adult tissues is necessary to obtain a clinically relevant number of cells that maintain progenitor potency. We report a simple non-enzymatic isolation (NE) method of PVCs from human umbilical cord (HUC) and compare its efficiency with the conventional collagenase treatment method (CT) in terms of proliferation, immunophenotype, clonogenic capacity, and differentiation potential. Cells isolated by NE expressed the accepted surface marker profile of PVCs and possessed multilineage differentiation potential. Whereas both methods provided similar patterns or levels of immunophenotypes and proliferation, PVCs obtained by NE maintained a higher level of CD146(+) frequency compared with that of CT over passages and displayed greater in vitro osteogenic differentiation potential and clonogenic capacity than CT-PVCs. We assess the potential of various exogenous factors to boost the proliferation of NE- and CT-PVCs in vitro. Supplementation of basic fibroblast growth factor (bFGF) provided optimal conditions that significantly enhanced their proliferation rate. This treatment drove the cells into S phase and increased the proportion of stage-specific antigen-4-positive population without altering other immunophenotypes. Thus, the NE method with bFGF supplementation offers an alternative way for obtaining sufficient numbers of HUCPVCs that have good clonogenic and differentiation potential and that are applicable at therapeutic doses for regenerative medicine.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700