UV-enhanced acetone gas sensing of Co3O4-decorated ZnS nanorod gas sensors
详细信息    查看全文
  • 作者:Sunghoon Park ; Gun-Joo Sun ; Soohyun Kim ; Sangmin Lee
  • 关键词:ZnS ; nanorod ; sensor ; Co3O4 ; UV
  • 刊名:Electronic Materials Letters
  • 出版年:2015
  • 出版时间:July 2015
  • 年:2015
  • 卷:11
  • 期:4
  • 页码:572-579
  • 全文大小:1,394 KB
  • 参考文献:1.T. Zhai, L. Li, Y. Ma, M. Liao, X. Wang, X. Fang, J. Yao, Y. Bando, and D. Golberg, Chem. Soc. Rev. 40, 2986 (2011).View Article
    2.X. S. Fang, T. Y. Zhai, U. K. Gautam, L. Li, L. M. Wu, Y. Bando, and D. Golberg, Prog. Mate. Sci. 56, 175 (2011).View Article
    3.Y. G. Liu, P. Feng, X. Y. Xue, S. L. Shi, X. Q. Fu, and C. Wang, Appl. Phys. Lett. 90, 042109 (2007).View Article
    4.L. Yang, J. Han, T. Luo, M. Li, J. Huang, and F. Meng, Chem. Asian. J. 4, 174 (2009).View Article
    5.Z. G. Chen, J. Zou, G. Liu, H. F. Lu, F. Li, and G. Q. Lu, Nanotechnol. 19, 055710 (2008).View Article
    6.X. Wang, Z. Xie, H. Huang, Z. Liu, D. Chen, and G. Shen, J. Mat. Chem. 22, 6845 (2012).View Article
    7.S. Park, S. An, H. Ko, C. Jin, and C. Lee, ACS Appl. Mater. Interfaces 4, 3650 (2012).View Article
    8.Y. J. Kwon, H. S. Kim, S. M. Lee, I. J. Chin, T. Y. Seong, W. I. Lee, and C. Lee, Sens. Actuat. B: Chem. 173, 441 (2012).View Article
    9.Y. Engel, R. Elnathan, A. Pevzner, G. Davidi, E. Flaxer, and F. Patolsky, Angew. Chem. 49, 6830 (2010).View Article
    10.Y. Q. Li, K. Zou, Y. Y. Shan, J. A. Zapien, and S. T. Lee, J. Phys. Chem. B 110, 6759 (2006).View Article
    11.T. V. Prevenslik, J. Lumin. 1210, 87 (2000).
    12.L. Chai, J. Du, S. Xiong, H. Li, Y. Zhu, and Y. Qian, J. Phys. Chem. C 111, 12658 (2007).View Article
    13.X. J. Xu, G. T. Fei, W. H. Yu, X. W. Wang, L. Chen, and L. D. Zhang, Nanotechnol. 17, 426 (2006).View Article
    14.X. P. Shen, M. Han, J. M. Hong, Z. L. Xue, and Z. Xu, Chem. Vap. Dep. 11, 250 (2005).View Article
    15.X. Wang, Z. Xie, H. Huang, Z. Liu, D. Chen, and G. Shen, J. Mater. Chem. 22, 6845 (2012).View Article
    16.A. Kolmakov, D. Klenov, Y. Lilach, S. Stemmer, and M. Moskovits, Nano Lett. 5, 667 (2005).View Article
    17.H. Kim, C. Jin, S. Park, S. Kim, and C. Lee, Sens. Actuat. B: Chem. 161, 594 (2012).View Article
    18.N. Ramgir, I. Mulla, and K. Vijayamohanan, Sens. Actuat. B: Chem. 107, 708 (2005).View Article
    19.S. Park, S. An, H. Ko, S. Lee, and C. Lee, Sens. Actuat. B: Chem. 188, 1270 (2013).View Article
    20.Q. Wan and T. Wang, Chem. Commun. 1, 3841 (2005).View Article
    21.S. Kim, S. Park, S. Park, and C. Lee, Sens. Actuat. B: Chem. 209, 180 (2015).View Article
    22.G. D. Khuspe, S. T. Navale, D. K. Bandgar, R. D. Sakhare, M. A. Chougule, and V. B. Patil, Electron. Mater. Lett. 10, 191 (2014).View Article
    23.M. Rumyantseva, V. Kovalenko, A. Gaskov, E. Makshina, V. Yuschenko, I. Ivanova, A. Ponzoni, G. Faglia, and E. Comini, Sens. Actuat. B: Chem. 118, 208 (2006).View Article
    24.S. Park, H. Ko, S. Kim, and C. Lee, ACS Appl. Mater. Interfaces 6, 9595 (2014).View Article
    25.J. Tamaki, K. Shimanoe, Y. Yamada, Y. Yamamoto, N. Miura, and N. Yamazoe, Sens. Actuat. B: Chem. 49, 121 (1998).View Article
    26.S. Park, S. Park, S. Lee, H. W. Kim, and C. Lee, Sens. Actuat. B: Chem. 202, 840 (2014).View Article
    27.S. Park, S. Kim, S. Park, and C. Lee, RSC Adv. 4, 63402 (2014).View Article
    28.C.-G. Kuo, L.-R. Hwang, S. Hor, and J.-S. Chen, Electron. Mater. Lett. 9, 481 (2013).View Article
    29.E. Comini, A. Cristalli, G. Faglia, and G. Sberveglieri, Sens. Actuat. B: Chem. 65, 260 (2006).View Article
    30.S. Park, S. An, Y. Mun, and C. Lee, ACS Appl. Mater. Interfaces 5, 4285 (2013).
    31.Q. Zhang, P. Wang, J. Li, and X. Gao, Biosens. Bioelectron. 15, 249 (2000).View Article
    32.S. Tjoa and P. Fennessey, Anal. Biochem. 197, 77 (1991).View Article
    33.L. Li, S. He, and W. Chen, Anal. Chem. 86, 7996 (2014).View Article
    34.C. W. Na, H. S. Woo, I. D. Kim, and J. H. Lee, Chem. Commun. 47, 5148 (2011).View Article
    35.C. Jin, S. Park, H. Kim, and C. Lee, Sens. Actuat. B: Chem. 161, 223 (2012).View Article
    36.P. Yu, J. Wang, H. Du, P. Yao, Y. Hao, and X. Li, J. Nanomater. 2013, 1 (2013).
    37.W. X. Jin, S. Y. Ma, A. M. Sun, J. Luo, L. Cheng, W. Q. Li, Z. Z. Tie, X. H. Jiang, and T. T. Wang, Mater. Lett. 143, 283 (2015).View Article
    38.D. An, X. Tong, J. Liu, Q. Wang, Q. Zhou, J. Dong, and Y. Li, Superlattice. Microst. 77, 1 (2015).View Article
    39.S. Wang, P. Wang, Z. Li, C. Xiao, B. Xiao, R. Zhao, T. Yang, and M. Zhang, New J. Chem. 38, 879 (2014).
    40.D. Chen, X. Hou, T. Li, L. Yin, B. Fan, H. Wang, X. Li, H. Xu, H. Lu, R. Zhang, and J. Sun, Sens. Actuat. B: Chem. 153, 373 (2011).View Article
    41.X. H. Jiang, S. Y. Ma, W. Q. Li, T. T. Wang, W. X. Jin, J. Luo, L. Cheng, Y. Z. Mao, and M. Zhang, Mater. Lett. 142, 299 (2015).View Article
    42.J. P. Cheng, B. B. Wang, M. G. Zhao, F. Liu, and X. B. Zhang, Sens. Actuat. B: Chem. 190, 78 (2014).View Article
    43.F. Qu, J. Liu, Y. Wang, S. Wen, Y. Chen, X. Li, and S. Ruan, Sens. Actuat. B: Chem. 199, 346 (2014).View Article
    44.K. W. Kao, M. C. Hsu, Y. H. Chang, S. Gwo, and J. A. Yeh, Sensors 12, 7157 (2012).View Article
    45.B. Bhowmik, K. Dutta, N. Banerjee, A. Harza, and P. Bhattacharyya, Emerging Trends in Computing, Communication and Nanotechnology (ICE-CCN
  • 作者单位:Sunghoon Park (1)
    Gun-Joo Sun (1)
    Soohyun Kim (1)
    Sangmin Lee (2)
    Chongmu Lee (1)

    1. Department of Materials Science and Engineering, Inha University, Incheon, 402-751, Korea
    2. Department of Mechanical Engineering, Inha University, Incheon, 402-751, Korea
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Condensed Matter Physics
    Electronics, Microelectronics and Instrumentation
    Optical and Electronic Materials
    Thermodynamics
    Characterization and Evaluation of Materials
  • 出版者:The Korean Institute of Metals and Materials, co-published with Springer Netherlands
  • ISSN:2093-6788
文摘
Co3O4-decorated ZnS nanorods were synthesized by the thermal evaporation of ZnS powders followed by a sol-gel process for Co3O4-decoration. The acetone gas sensing properties of multiple-networked pristine and Co3O4-decorated ZnS nanorod sensors were examined. The diameters of the Co3O4 nanoparticles ranged from 4 to 20 nm. The multiple networked pristine ZnS nanorods and Co3O4-decorated ZnS nanorod sensors showed responses of 156-64% and 198-,650% to 10-00 ppm of acetone at room temperature under UV illumination at 2.2 mW/cm2, respectively. The response and recovery times of the ZnS nanorod sensor at 500 ppm of acetone was reduced from 52 s to 26 s and from 192 s to 110 s, respectively, by Co3O4-decoration. The responses of the sensors exhibited strong dependence on the UV illumination intensity. The responses of the pristine ZnS nanorod and Co3O4-decorated ZnS nanorod sensors to 500 ppm of acetone at room temperature increased from 112 to 364% and from 132 to 1650%, respectively. This paper discusses the underlying mechanisms of the enhanced response of the ZnS nanorod sensor to acetone gas by Co3O4-decoration and UV irradiation.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700