Potential of a bio-disintegrable polymer blend using alkyl-chain-modified lignin
详细信息    查看全文
  • 作者:Sunghoon Kim ; Jongshin Park ; Jungmin Lee ; Hyun-gyoo Roh ; Dami Jeong…
  • 关键词:Lignin ; carbohydrate complex ; Modification ; Alkyl ; chain ; Compatibility ; Degradation
  • 刊名:Fibers and Polymers
  • 出版年:2015
  • 出版时间:April 2015
  • 年:2015
  • 卷:16
  • 期:4
  • 页码:744-751
  • 全文大小:729 KB
  • 参考文献:1.M. C. Silva and G. G. Silva, J. Appl. Polym. Sci., 98, 336 (2005).CrossRef
    2.W. Amass, A. Amass, and B. Tighe, Polym. Int., 47, 89 (1998).CrossRef
    3.S. J. Huang and P. G. Edelonan, “Principle and Application: Degradable Polymer” (G. Scott and D. Gilead Eds.), p.18, Chapman & Hall, London, 1995.
    4.A. L. Andrady, J. Macromol. Sci. Rev Macromol. Chem. Phys., C34, 25 (1994).CrossRef
    5.M. Okada, Prog. Polym. Sci., 27, 87 (2002).CrossRef
    6.S. Kubo, R. D. Gilbert, and J. F. Kadla in “Natural Fibers, Biopolymers, and Biocomposites” (A. K. Mohanty, M. Misra, and L. T. Drzal Eds.), p.674, Taylor and Francis, Boca Raton, 2005.
    7.D. Feldman, D. Banu, M. Lacasse, J. Wang, and C. Luchian, J. Macromol. Sci. Part A-Pure Appl. Chem., 32, 1613 (1995).CrossRef
    8.D. Feldman, “Lignin and Its Polyblends- A Review; Chemical Modification, Properties, and Usage of Lignin” (Q. Thomas Ed.), pp.81–82, Kluwer Academic/Plenum Publishers, New York, 2002.
    9.G. Dai, K. V. Sarkanen, and C. H. Ludwig Eds., “Lignins” pp.697–768, Wiley-Interscience, New York, 1971.
    10.T. Koshijima and T. Watanabe in “Association Between Lignin and Carbohydrates in Wood and Other Plant Tissues”, pp.96–98, Springer-Verlag, Berlin, Heidelberg, 2003CrossRef
    11.T. Koshijima, T. Watanabe, and F. Yaku in “Lignin: Properties and Materials” (W. G. Glasser and S. Sarakanen Eds.), pp.15–26, ACS Symp. Ser. 397, Washington, 1989.
    12.H. H. Nimz, TAPPI J., 56, 124 (1973).
    13.J. Burke, “Solubility Parameters: Theory and Application”, pp.34–36, The Book and Paper Group ANNUAL, Oakland, 1984.
    14.T. Setoyama, M. Kobayashi, Y. Kabata, T. Kawai, and A. Nakanishi, Catal. Today, 73, 2930 (2002).
    15.W. Thielemans and R. P. Wool, Biomacromolecules, 6, 1902 (2005).CrossRef
    16.C. M. Hansen, “Hansen Solubility Parameters: A User’s Handbook”, 2nd ed., pp.282–283, CRC Press, Boca Raton, 2007.
    17.N. Takahashi and T. Koshijima, Wood Sci. Technol., 22, 240 (1988).
    18.Difco™ & BBL™ Manual 2nd ed., Becton, Dickinson and Company Sparks, USA, 200
    19.L. Alexander, “X-ray Diffraction Methods in Polymer Science”, pp.165–172, Wiley Interscience, New York, 1969.
    20.T. H. Lee, F. Y. C. Boey, and K. A. Khor, Polym. Compos., 16, 482 (1995).CrossRef
    21.H. Wang, X. Zhou, Q. Liu, and G. Chen, Appl. Microbiol. Biotechnol., 89, 1502 (2011).
    22.R. M. Silverstein, G. C. Bassler, and T. C. Morrill, “Spectrometric Identification of Organic Compounds”, 5th ed., pp.158–163, John Wiley and Sons, New York, 1981.
    23.G. Toriz, F. Denes, and R. A. Young, Polym. Compos., 23, 808 (2002).CrossRef
    24.C. G. Sanchez and L. A. E. Alvarez, Macromol. Mater. Eng., 272, 66 (1999).
    25.H. Jeong, J. Park, S. Kim, J. Lee, and J. Jo, Fiber. Polym., 13, 1316 (2012).CrossRef
    26.D. P. Martin and S. F. Williams, Biochem. Eng. J., 16, 98 (2003).CrossRef
    27.J. Li, Y. He, and Y. Inoue, Polym. Int., 52, 951 (2003).
    28.W. K. Lee, Y. Doi, and C. S. Ha, Macromol. Biosci., 1, 108 (2001).CrossRef
    29.C. van Blitterswijk, “Tissue Engineering”, pp.205–206, Academic Press, London, 2008.
    30.M. S. Islam, K. L. Pickering, and N. J. Foreman, Polym. Degrad. Stabil., 95, 62 (2010).CrossRef
    31.T. Iwata and Y. Doi, Macromol. Chem. Phys., 200, 2439 (1998).
  • 作者单位:Sunghoon Kim (3)
    Jongshin Park (3)
    Jungmin Lee (3)
    Hyun-gyoo Roh (3)
    Dami Jeong (3)
    Soomyung Choi (1)
    Seungtaek Oh (2)

    3. Department of Biosystems & Biomaterials Science and Engineering, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 151-742, Korea
    1. DYTEC Institute, Daegu, 703-834, Korea
    2. Hyosung, R&D Business Labs, Anyang, 431-080, Korea
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Polymer Sciences
  • 出版者:The Korean Fiber Society
  • ISSN:1875-0052
文摘
In this study, butylolactone-modified lignin (BLL) and tetrahydrofuran-modified lignin (THFL) were used for alkyl chain modification of lignin in order to mimic the relation of lignin-carbohydrate-complex (LCC) and cellulose. The result of FT-IR and 1H-NMR analysis indicate that lignin was well modified. It is confirmed that Aromatic OH of lignin (ArOH, 9.86 ppm) and Aliphatic OH of lignin (AlOH, 3.88 ppm) were decreased. Tensile properties of THFL/polypropylene (PP) blend are increased better than lignin/PP or acetylated lignin/PP. BLL/polyethylene terephthalate (PET) blend shows typical “rule of mixture” behavior because property of alkyl chain (P4HB) well reflected that used for modification of BLL. The results of thermal and mechanical analyses of modified lignin/matrix blends demonstrate that the characteristics of the alkyl chains used to modify lignin were well reflected in the final blends compared with lignin/matrix. In the case of THFL/ PP blend shows phase separation because of miscibility gap between alkyl chain of THFL and PP. The result of XRD analysis indicate that BLL/PET shows increased crystallinity because of good compatibility and THFL/PP shows opposite behavior. It can be confirmed that type of alky chain and miscibility gap between alkyl chain-matrix affect mechanical properties enormously in the fungi degradable environment.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700