Realization of quantum gates with multiple control qubits or multiple target qubits in a cavity
详细信息    查看全文
  • 作者:Muhammad Waseem ; Muhammad Irfan ; Shahid Qamar
  • 关键词:Multi ; qubit quantum gates ; Cavity QED ; Solid ; state qubit ; Superconducting quantum interference devices (SQUIDs) ; Superconducting resonator
  • 刊名:Quantum Information Processing
  • 出版年:2015
  • 出版时间:June 2015
  • 年:2015
  • 卷:14
  • 期:6
  • 页码:1869-1887
  • 全文大小:923 KB
  • 参考文献:1.Shor, W.P.: In proceedings of the 35th annual symposium on foundations of computer science (IEE Computer society press, Santa Fe, NM, 1994)
    2.Grover, L.K.: Quantum mechanics helps in searching for a needle in a Haystack. Phys. Rev. Lett. 79(2), 325-28 (1997)View Article ADS
    3.Sleator, T., Weinfurter, H.: Realizable universal quantum logic gates. Phys. Rev. Lett. 74(20), 4087-090 (1995)View Article ADS MATH MathSciNet
    4.DiCarlo, L., Chow, J.M., Gambetta, J.M., Bishop, L.S., Johnson, B.R., Schuster, D.I., Majer, J., Blais, A., Frunzio, L., Girvin, S.M., Schoelkopf, R.J.: Demonstration of two-qubit algorithms with a superconducting quantum processor. Nature 460, 240-44 (2009)View Article ADS
    5.Bialczak, R.C., Ansmann, M., Hofheinz, M., Lucero, E., Neeley, M., O’Connell, A.D., Sank, D., Wang, H., Wenner, J., Steffen, M., Cleland, A.N., Martinis, J.M.: Quantum process tomography of a universal entangling gate implemented with Josephson phase qubits. Nat. Phys. 6, 409413 (2010)View Article
    6.Yamamoto, T., Neeley, M., Lucero, E., Bialczak, R.C., Kelly, J., Lenander, M., Mariantoni, M., O’Connell, A.D., Sank, D., Wang, H., Weides, M., Wenner, J., Yin, Y., Cleland, A.N., Martinis, J.M.: Quantum process tomography of two-qubit controlled-Z and controlled-NOT gates using superconducting phase qubits. Phys. Rev. B 82(18), 184515 (2010)View Article ADS
    7.Plantenberg, J.H., de Groot, P.C., Harmans, C.J.P.M., Mooij, J.E.: Demonstration of controlled-NOT quantum gates on a pair of superconducting quantum bits. Nature (London) 447, 836-39 (2007)View Article ADS
    8.Leek, P.J., Filipp, S., Maurer, P., Baur, M., Bianchetti, R., Fink, J.M., G?ppl, M., Steffen, L., Wallraff, A.: Using sideband transitions for two-qubit operations in superconducting circuits. Phys. Rev. B 79(18), 180511(R) (2009)View Article ADS
    9.Mottonen, M., Vartiainen, J.J., Bergholm, V., Salomaa, M.M.: Quantum circuits for general multiqubit gates. Phys. Rev. Lett. 93(13), 130502 (2004)View Article ADS
    10.Monz, T., Kim, K., H?nsel, W., Riebe, M., Villar, A.S., Schindler, P., Chwalla, M., Hennrich, M., Blatt, R.: Realization of the quantum Toffoli gate with trapped ions. Phys. Rev. Lett. 102(4), 040501 (2009)View Article ADS
    11.Fedorov, A., et al.: Implementation of a Toffoli gate with superconducting circuits. Nat. Phys. 481, 170172 (2011)
    12.Zubairy, M.S., Kim, M., Scully, M.O.: Cavity-QED-based quantum phase gate. Phys. Rev. A 68(3), 033820 (2003)View Article ADS
    13.Chiaverini, J., Leibfried, D., Schaetz, T., Barrett, M.D., Blakestad, R.B., Britton, J., Itano, W.M., Jost, J.D., Knill, E., Langer, C., Ozeri, R., Wineland, D.J.: Realization of quantum error correction. Nature (London) 432, 602-05 (2004)View Article ADS
    14.Zubairy, M.S., Matsko, A.B., Scully, M.O.: Resonant enhancement of high-order optical nonlinearities based on atomic coherence. Phys. Rev. A 65(4), 043804 (2002)View Article ADS
    15.Waseem, M., Ahmed, R., Irfan, M., Qamar, S.: Three-qubit Grovers algorithm using superconducting quantum interference devices in cavity-QED. Quantum Inf. Process. 12, 3649 (2013)View Article ADS MATH MathSciNet
    16.?a?ura, M., Buzek, V.: Multiparticle entanglement with quantum logic networks: application to cold trapped ions. Phys. Rev. A 64(1), 012305 (2001)View Article ADS
    17.Gaitan, F.: Quantum Error Correction and Fault Tolerant Quantum Computing. CRC Press, Boca Raton (2008)View Article MATH
    18.Beth, T., R?tteler, M.: Quantum Information, vol. 173, Ch. 4, p. 96. Springer, Berlin (2001)View Article
    19.Braunstein, S.L., Buzek, V., Hillery, M.: Quantum-information distributors: quantum network for symmetric and asymmetric cloning in arbitrary dimension and continuous limit. Phys. Rev. A 63(5), 052313 (2001)View Article ADS
    20.Chang, J.T., Zubairy, M.S.: Three-qubit phase gate based on cavity quantum electrodynamics. Phys. Rev. A 77(1), 012329 (2008)View Article ADS
    21.Yang, C.P., Han, S.: n-qubit-controlled phase gate with superconducting quantum-interference devices coupled to a resonator. Phys. Rev. A 72(3), 032311 (2005)View Article ADS
    22.Yang, C.P., Han, S.: Realization of an n-qubit controlled-U gate with superconducting quantum interference devices or atoms in cavity QED. Phys. Rev. A 73(3), 032317 (2006)View Article ADS
    23.Waseem, M., Irfan, M., Qamar, S.: Multiqubit quantum phase gate using four-level superconducting quantum interference devices coupled to superconducting resonator. Physica C 477, 24-1 (2012)View Article ADS
    24.Yang, C.P., Zheng, S.B., Nori, F.: Multiqubit tunable phase gate of one qubit simultaneously controlling n qubits in a cavity. Phys. Rev. A 82(6), 062326 (2010)View Article ADS
    25.Yang, C.P., Liu, Y.X., Nori, F.: Phase gate of one qubit simultaneously controlling n qubits in a cavity. Phys. Rev. A 81(6), 062323 (2010)View Article ADS
    26.You, J.Q., Nori, F.: Superconducting circuits and quantum information. Phys. Today 58, 42 (
  • 作者单位:Muhammad Waseem (1) (2)
    Muhammad Irfan (1) (3)
    Shahid Qamar (1)

    1. Department of Physics and Applied Mathematics, Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad, 45650, Pakistan
    2. Institute for Laser Science, University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo, 182-8585, Japan
    3. Kavli Institute of Nanoscience, Delft University of Technology, P.O. Box 4056, 2600, GA Delft, The Netherlands
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Physics
    Physics
    Mathematics
    Engineering, general
    Computer Science, general
    Characterization and Evaluation Materials
  • 出版者:Springer Netherlands
  • ISSN:1573-1332
文摘
We propose a scheme to realize a three-qubit controlled phase gate and a multi-qubit controlled NOT gate of one qubit simultaneously controlling n-target qubits with a four-level quantum system in a cavity. The implementation time for multi-qubit controlled NOT gate is independent of the number of qubit. Three-qubit phase gate is generalized to n-qubit phase gate with multiple control qubits. The number of steps reduces linearly as compared to conventional gate decomposition method. Our scheme can be applied to various types of physical systems such as superconducting qubits coupled to a resonator and trapped atoms in a cavity. Our scheme does not require adjustment of level spacing during the gate implementation. We also show the implementation of Deutsch–Joza algorithm. Finally, we discuss the imperfections due to cavity decay and the possibility of physical implementation of our scheme.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700